Savitribai Phule Pune University, Pune Faculty of Science and Technology

Syllabus for

T.E. (Electronics and Computer Engineering)

(Course 2019)

(w.e.f. June 2022)

Third Year of Electronics and Computer Engineering (2019 Course)

(With effect from Academic Year 2022-23)

Semester V

Course Code	Course Name	Teaching Scheme (Hours/ week)Exa			amination Scheme and Marks				larks	Credit Scheme				
		Lecture	Practical	Tutorial	Mid-Sem	End-Sem	Term work	Practical	Oral	Total	Lecture	Practical	Tutorial	Total
310341	Database Management Systems	03	-	-	30	70	-	-	-	100	03	-	-	03
310342	Advanced Java Programming	03	-	-	30	70	-	-	-	100	03	-	-	03
310343	Data Communication	03	-	-	30	70	-	-	-	100	03	-	-	03
310344	Microcontroller and Applications	03	-	-	30	70	-	-	-	100	03	-	-	03
310345	Elective I	03	-	-	30	70	-	-	-	100	03	-	-	03
310346	Database Management Systems Lab	-	02	-	-	-	25	-	25	50	-	02	-	02
310347	Advanced Java Programming Lab	-	02	-	-	-	-	-	25	25	-	01	-	01
310348	Data Communication Lab	-	02	-	-	-	-	50	-	50	-	01	-	01
310349	Microcontroller and Applications Lab	-	02	-	-	-	-	50	-	50	-	01	-	01
310350	Data Analytics using Python Lab	-	02	-	-	-	25	-	-	25	-	01	-	01
	Total	15	10	-	150	350	50	100	50	700	15	06	-	21
310351A	Mandatory Audit Course 5					Grade				ade				
							Т	otal C	credit	15	06	-	21	
Elective I 310345A -Distributed Systems 310345B- Block Chain Technology 310345C- Digital Signal Processing 310345D- Sensors and Applications						 Audit Course 5 (310351A) Cyber Security Professional Ethics and Etiquettes Engineering Economics Foreign Language 								

• MOOC- Learn New Skills

Savitribai Phule Pune University

Third Year of Electronics and Computer Engineering (2019 Course)

(With effect from Academic Year 2022-23)

Semester VI														
Course Code	Course Name	Teaching Scheme (Hours/ week)			mination Scheme and Marks				larks	Credit Scheme				
		Lecture	Practical	Tutorial	Mid-Sem	End-Sem	Term work	Practical	Oral	Total	Lecture	Practical	Tutorial	Total
310352	Software Engineering and Project Management	03	-	-	30	70	-	-	-	100	03	-	-	03
310353	Computer Networks and Security	03	-	-	30	70	-	-	-	100	03	-	-	03
310354	Embedded Processors & Applications	03	-	-	30	70	-	-	-	100	03	-	-	03
310355	Elective II	03	-	-	30	70	-	-	-	100	03	-	-	03
310356	Computer Networks and Security Lab	-	02	-	-	-	25	-	25	50	-	01	-	01
310357	Embedded Processors & Applications Lab	-	02	-	-	-	-	50	-	50	-	01	-	01
310358	Elective-II Lab	-	02	-	-	-		-	50	50	-	01	-	01
310359	Mini Project	-	04	-	-	-	25	-	25	50	-	02	I	02
310360	Internship**	-	**	-	-	-	100 **	-	-	100	-	04 **	-	04
	Total	12	10	-	120	280	150	50	100	700	12	09	-	21
310351B	Mandatory Audit Course 6												Gr	ade
								Т	'otal C	Credit	12	09	-	21
Elective II 3103554	I A-Software Modeling an	d Des	sign	a		Aud •	it Cou Digita	rse 6 al and	(31035 Socia	51B) al Mec	lia Ma	arketii	ıg	
310355B- Advanced Database Management Systems				ems	Sustainable Energy Systems									
• Leadership and Personality Development								nt						
310355D-PLC and Automation					•	Horei	gn La)C-Le	nguag arn Ne	ge ew Sk	ills				
Elective-I	I Lab													
Assignmen	Assignments from Elective-II selected													
**Interns	hip:													
Internship	guidelines are provided i	n cour	se cur	riculu	n shee	t.								

SEMESTER - V

Savitribai Phule Pune University									
Third Year of Electronics and Computer Engineering (2019 Course)									
310341:Database Management System									
Teaching Scheme:	Aching Scheme: Credit: 03 Examination Scheme:								
Theory: 03 Hrs. / week In-Sem (Theory): 30 Marks									
		End-Sem (Theory): 70 Marks						
Prerequisite Courses, if any:	Data Structures and Algorithms								
Companion Course, if any: D	Database Management System Lal)							
Course Objectives:									
1. To understand fundamental	concepts of database from its des	ign to its implementa	ation.						
2. To analyze database require	ments and determine the entities i	nvolved in the system	m.						
3. To manipulate database usin	ng SQL Query to create, update ar	nd manage Database.							
4. Be familiar with the basic is	sues of transaction processing and	d concurrency contro	bl.						
5. To learn and understand Parallel Databases and its Architectures.									
6. To learn and understand Dis	stributed Databases and its applica	ations.							
Course Outcomes: On comple	tion of the course, learner will be	able to-							
CO1: Understand the underlyi	ng concepts of database systems.								
CO2: Design and implement a	database schema for a given prol	olem-domain using d	lata model.						
CO3: Solve wide range of que	ery and update problems using SQ	L/DML/DDL comm	ands.						
CO4: Explain transaction Mar	agement in relational database Sy	/stem.							
CO5: Understand various Data	abase Architectures and its applic	ations.							
CO6: Apply NoSQL database	concepts for processing unstructu	red data.							
	Course Contents								
Unit I	Introduction to DBN	⁄IS	(07 Hrs.)						
Introduction to Database Man	agement Systems, Purpose of	Database Systems	, Database-System						
Applications, Data Abstraction and	nd Database System Structure.								
Relational Model: Structure of relational databases, Domains, Relations, Keys - Super key, Candidate									
key, Primary key, Foreign key, Relational algebra – fundamental operators and syntax, relational algebra									
queries, tuple relational calculus.									
Entity-Relationship model: B	asic Concepts, Entity Set, Rela	tionship Sets and	Weak Entity Sets,						
Mapping Cardinalities, E-R dia	grams, Extended E-R Features,	Converting E-R &	Mapping Cardinalities, E-R diagrams, Extended E-R Features, Converting E-R & EER diagram into						

tables.

Mapping of Course Outcomes for Unit I	CO1: Understand the underlying concepts of database system	s.						
Unit II	Relational Database Design	(06 Hrs.)						
Basic concepts, CODD's Rules, Relational Integrity: Domain, Referential Integrities, Enterprise								
Constraints, Database De	esign: Features of Good Relational Designs, Normalization, At	tomic Domains and						
First Normal Form, Deco	omposition using Functional Dependencies, 2NF, 3NF, and BC	CNF.						
Mapping of Course Outcomes for Unit II	urse CO2: Design and implement a database schema for a given problem- Init II domain using data model.							
Unit III	Basics of SQL	(07 Hrs.)						
DDL, DML, DCL, Str	ucture: Creation, Alteration, Defining constraints – Primary	key, Foreign key,						
Unique key, Not null, Ch	eck, IN operator, Functions - Aggregate Functions, Built-in Fu	unctions –Numeric,						
Date, String Functions, S	et operations, sub-queries, correlated sub queries, Use of grou	ıp by, having, order						
by, join and its types, Ex	ist, Any, All, view and its types.							
Transaction control co	ommands: Commit, Rollback, Save-point PL/SQL Concept	ts: Cursors, Stored						
Procedures, Stored Funct	ion, Database Triggers							
Mapping of Course Outcomes for Unit III	CO3: Solve wide range of query and update SQL/DML/DDL commands.	problems using						
Unit IV	Database Transactions Management	(07 Hrs.)						
Basic concepts of a Transaction, Transaction Management, Properties of Transactions, Concept of								
Schedule, Serial Schedu	le, and Serializability: Conflict and View, Cascaded Aborts	s, Recoverable and						
Non-recoverable Schedu	les, Concurrency Control: Need, Locking Methods, Deadlock	handling and						
Time-stamp based Protoc	cols.							
Mapping of Course Outcomes for Unit IV	CO4: Explain transaction Management in relational data	ıbase System.						
Unit V	Parallel and Distributed Databases	(06 Hrs.)						
Multi-user DBMS Arc	chitectures, Introduction to Parallel Databases, perfo	rmance measures-						
throughput, response tim	e, speed-up, scale-up, Interconnection Network Architectures	s, Architectures for						
parallel databases, Eva	luating Parallel Query in Parallel Databases, Virtualizat	tion on Multicore						
processors, Parallelizing	individual operations, Parallel query optimizations. Introduc	tion to distributed						
databases, Distributed D	OBMS architectures, storing data in a Distributed, Distributed	Query processing,						
Updating distributed data, Distributed transactions, Distributed Concurrency control and Recovery.								
Mapping of Course Outcomes for Unit V	CO5: Understand various Database Architectures and its	applications.						
Unit VI	No SQL Databases	(07 Hrs.)						
Types of Data: structure	d, unstructured and semi structured data.							
NoSQL Database: Introduction, Need, Features.								
Types of NoSQL Databases: Key Value store, Document store,, graph, wide column store, BASE								

properties, DATA consistency model, ACID vs. BASE

MongoDB(with syntax and usage):CRUD operations, Indexing, Aggregation, Map Reduce, Replication, Shading.

Mapping of Course
Outcomes for Unit VICO6: Apply NoSQL database concepts for processing unstructured data.

Learning Resources

Text Books:

- 1. A. Silberschatz, H.F. Korth and S. Sudarshan, -Database System Concepts, McGraw Hill, 6th Edition.
- 2. C.J. Date, A. Kannan, S. Swamynathan -An introduction to Database Systems^{II}, Pearson, 8th Edition.
- 3. Pramod Sadalage and Martin Fowler NoSQL Distilled, Addison-Wesley Professional

Reference Books:

- 1. Martin Gruber, -Understanding SQLI, Sybex Publications.
- 2. Ivan Bayross, -SQL-PL/SQLI, BPB Publications, 4th Edition.
- 3. S.K. Singh, -Database Systems: Concepts, Design and Application^{||}, Pearson, Education, 2nd Edition.

MOOC / NPTEL Courses:

1. NPTEL Course "Database Management System"

Link of the Course: <u>https://nptel.ac.in/courses/106105175</u>

2. NPTEL Course "Database Management System"

https://nptel.ac.in/courses/106104135

Savitribai Phule Pune University Third Year of Electronics and Computer Engineering (2019 Course)									
310342:Advanced Java Programming									
Teaching Scheme:	eaching Scheme: Credit: 03 Examination Scheme:								
Theory: 03 Hrs. / week	Theory: 03 Hrs. / week In-Sem (Theory): 30 Marks								
		End-Sem (T	neory): 70 Marks					
Prerequisite Courses, if	any: O	bject Oriented Programming							
Companion Course, if a	ny: -								
Course Objectives:									
1. To design and devel	lop basic	c OOPS concept in Java.							
2. To design and devel	lop pack	ages in Java.							
3. To design enterprise	e based a	applications by encapsulating an application's bu	sines	s logic.					
4. To designing applic	ations u	sing pre-built frameworks.							
Course Outcomes: On completion of the course, learner will be able to-									
CO1: Design and devel	op GUI	applications using Applets.							
CO2: Apply relevant A	WT/ swi	ing components to handle the given event.							
CO3: Design and deve	lop GU	I applications using Abstract Windowing Too	lkit (/	AWT), Swing and					
Event Handling.									
CO4: Learn to access da	atabase	through Java programs, using Java Database Cor	mecti	vity (JDBC)					
CO5: Invoke the remote	e method	ls in an application using Remote Method Invoc	ation	(RMI)					
CO6: Develop program	for clie	nt /server communication using Java Networking	g class	ses.					
		Course Contents							
Unit I		OOPS Concepts		(07 Hrs.)					
Inheritance Types Of Inh	eritance	: Introduction, Classes Inheritance, Interface Inh	eritan	ce, Multilevel					
Inheritance, Accessing m	embers	of other class/interface, Chaining Constructor us	sing th	nis() and Super(),					
This() constructor call, S	uper()co	nstructor call, Dynamic method Dispatch, Meth	od Ov	verriding,					
Modifiers: Java Access Specifies: Public, Protected, Private, Default Other modifiers for members: Static,									
Final, Abstract, Synchror	nized, Na	ative, Transient, Volatile, Other modifiers for cla	asses:	Abstract classes,					
Final classes.									
Mapping of Course Outcomes for Unit I	CO1:	Design and develop GUI applications using A	pplets	5.					
Unit II	Packa	ages, Interfaces and Fundamental Class	ses	(07 Hrs.)					

String, Introduction to Packages, Types of Fundamental Classes, String Handling: Creating Format String, Exception Handling, Nested Classes, Threads, Collections and Maps, Collections, Networking: Socket Programming, URL class.

Mapping of Course Outcomes for Unit II	CO2: Apply relevant AWT/ swing components to handle	the given event.
Unit III	Applet	(07 Hrs.)

Applet Basics -Introduction, limitations of AWT, Applet architecture – HTML APPLET tag – Passing parameter to Appletget, Japplet: Icons and Labels Text Fields Buttons, Combo Boxes, Checkboxes, Tabbed Panes, Scroll Panes.

Mapping of Course Outcomes for Unit II	CO3: Design and develop GUI applications using At Toolkit (AWT), Swing and Event Handling.	ostract Windowing
Unit IV	Event handling using AWT/Swing components	(07 Hrs.)

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes, inner classes. The AWT class hierarchy, user interface.

Mapping of Course Outcomes for Unit II	CO4: Learn to access database through Java prog Database Connectivity (JDBC)	grams, using Java
Unit V	GUI Programming	(07 Hrs.)

Designing Graphical User Interfaces in Java, Components and Containers, Basics of Components, Using

Containers, Layout Managers, AWT Components, Adding a Menu to Window, Java Utilities (java.util Package)

Mapping of Course Outcomes for Unit II	CO5: Invoke the remote methods in an application using Invocation (RMI)	Remote Method
Unit VI	Database Programming using JDBC	(07 Hrs.)

The Concept of JDBC, JDBC Driver Types & Architecture, JDBC Packages, A Brief Overview of the

JDBC process, Database Connection, Basic JDBC program Concept, Statement, Result Set, Prepared

Statement, Callable Statement, Executing SQL commands, Executing queries

Mapping of Course	CO6: Develop	program	for	client	/server	communication	using	Java
Outcomes for Unit VI	Networking class	ses.						

Learning Resources

Text Books:

1. Herbert Schildt, —Java: The complete referencell, Tata McGraw Hill, 7th Edition

2. Jim Keogh, -Complete Reference J2EE $\!\!\!\!|$, Enterpr

3. E. Balaguruswamy, -Programming with JAVA: A Primer McGraw Hill Education, India, 5th Edition.

Reference Books:

1. -Java 6 Programming∥, Black Book, Dreamtech

2. -Java Server Programming, Java EE6 (J2EE 1.6) , Black Book, Dreamtech

3. M.T. Savaliya,-Advanced Java Technologyl, Dreamtech

MOOC / NPTEL Courses:

- 1. NPTEL Course "Programming in Java" Link of the Course: <u>https://nptel.ac.in/courses/106/105/106105191/</u>
- 2. Udemy course "Advanced Java Programming"

Link of the Course: https://www.udemy.com/course/advanced-java-programming

	S	avitribai Phule Pune Ur	iversity					
Third Year of Electronics and Computer Engineering (2019 Course)								
310343:Data Communication								
Teaching Scheme:	aching Scheme: Credit: 03 Examination Scheme:							
Theory: 03 Hrs. / week	Theory: 03 Hrs. / week In-Sem (Theory): 30 Marks							
			End-Sem (Theory	7): 70 Marks				
Prerequisite Courses	, if any:	Principles of Communication	n System					
Companion Course,	i f any: I	Data Communication Lab						
Course Objectives:								
1. To provide an in-dep	th introd	uction to all aspects of data c	ommunication system.					
2. To analyze the noise	performa	ance of analog modulation tec	chniques.					
3. To introduce various	digital b	and pass modulation schemes						
4. To provide knowledg	ge of vari	ous multiplexing schemes.						
5. To identify the need	of data c	oding and error detection/corr	ection mechanism.					
Course Outcomes: (On comp	etion of the course, learner w	ill be able to					
CO1: Define & explain	terminol	ogy of data communications	and Apply various ne	etwork layer				
Techniques to ana	lyze pacl	xet flow on the basis of routin	g protocols.					
CO2: Understand the im	portance	of noise considerations in co	mmunication systems.					
CO3: Understand and en	xplain va	arious digital modulation tec	hniques used in Digi	tal communication				
systems and analy	ze their p	performance in presence of A	WGN noise.					
CO4: Understand working	ng of spre	ead spectrum communication	system and analyze its	s performance.				
CO5: Identify and explai	in error d	etection and correction using	appropriate techniques	s.				
CO6: Use error control c	oding teo	chniques to improve performa	nce of a Digital comm	nunication system.				
		Course Contents						
Unit I		Data Transmission Fun	damentals	(08 Hrs.)				
Data transmission concepts and terminology, analog and digital data transmission, Transmission modes								
(simplex, half duplex, full duplex), transmission media : Guided (UTP, STP, Optical, coaxial) &								
wireless(Radio wave, Microwave, Infrared), Data Transmission (parallel and serial synchronous and								
asynchronous transmission), analog and digital signal properties: Bandwidth, bit rate, baud rate, data rate,								

Connecting devices: Hubs/Repeaters, Switches, Bridges, Routers, Layered Architecture (OSI Model).

Mapping of CourseCO1 Define & explain terminology of data communications and ApplyOutcomes for Unit Ivarious network layer Techniques to analyze packet flow on the basis of

	routing protocols.	
Unit II	Noise	(06 Hrs.)

Sources of Noise, Types of Noise, White Noise, Thermal noise, shot noise, partition noise, Low frequency or flicker noise, burst noise, avalanche noise, Signal to Noise Ratio, SNR of tandem connection, Noise Figure, Noise Temperature, Friss formula for Noise Figure, Noise Bandwidth, Behavior of Baseband systems and Amplitude modulated systems i.e. DSBSC and SSBSC in presence of noise.

Mapping of Course	CO2:	Understand	the	importance	of	noise	considerations	in
Outcomes for Unit II	commu	nication syster	ns.					
Unit III		Digital Mo	o <mark>dul</mark> a	tion Techniq	lnes		(08 H	rs.)

Digital Modulation: Generation, Reception and Signal Space Representation for Binary Amplitude Shift Keying (BASK), Binary Frequency Shift Keying (BFSK), Binary Phase Shift Keying (BPSK), Differential phase shift keying (DPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Shift Keying (QASK),M-ary encoding: Need, M-ary FSK and M-ary PSK, Minimum Shift Keying (MSK).

Mapping of Course Outcomes for Unit III	CO3: Understand and explain various digital modulation techniques used in Digital communication systems and analyze their performance in AWGN noise.			
Unit IV	Multiple Access Techniques	(06 Hrs.)		
Introduction to Multiple Access Techniques - TDMA, FDMA, CDMA, Spread spectrum techniques:				
Direct Sequence Spread Spectrum (DS-SS) and Frequency Hopping Spread Spectrum (FH-SS),				
Pseudorandom (PN) Sequences: Introduction, Pseudo noise sequences, Generation and Characteristics,				
Pure and slotted ALOHA, Media access control protocol (CSMA).				
Mapping of Course CO4: Understand working of spread spectrum communication system and				

Mapping of Course Outcomes for Unit IV	analyze its performance.	cation system and
Unit V	Information Theory	(06 Hrs.)

The concept of amount of information and its properties, Average information, Information rate, Entropy, mutual information, channel capacity, channel coding theorem, Entropy coding: overview of BSC,

Huffman coding, Hartley Shannon's theorem, Shannon-Fano coding, code efficiency.

Mapping of Course	CO5: Identify	and	explain	error	detection	and	correction	using
Outcomes for Unit V	appropriate tecl	nique	S.					
Unit VI	I	Error	Control	Codin	g		(06 Hr	' s.)

Introduction to Error Control Coding, Need of Error control coding, Basic codes definitions, Error Detection, Parity, Checksum for error detection, Linear block codes, Matrix description of Linear Block codes, Parity check matrix, Decoding of Linear block codes, CRC, syndrome detection, Error probability after coding, Error control systems: FEC, ARQ Stop and Wait, Hybrid ARQ, go back N, selective repeat.

Mapping of Course Outcomes for Unit VI **CO6:** Use error control coding techniques to improve performance of a Digital communication system.

Learning Resources

Text Books:

- 1. Bernard Sklar, Digital Communication, 2/E, Pearson Education India, 2009
- 2. Willam Stallings, Data and Computer Communications,8/E, Pearson, 2007

Reference Books:

- 1. Behrouz A. Forouzan, Data Communications and Networking, 4/E, McGraw-Hill, 2006Leon W.
- Couch II, Digital and Analog Communication Systems, 6/E, Pearson Education Asia, 2002
- 2. Taub Schilling, Principals of Communication Systems, 2/E, Tata McGraw Hill, 2004
- 3. John J Proakis, Digital Communications, 3/E, McGraw-Hill Higher Education, 2001 Computer Networks, A.S.Tanenbaum, 4th edition, Pearson education
- 4) Ranjan Bose, —Information Theory coding and Cryptographyl, McGraw-Hill, 2nd Ed
- 5) Murlidhar Kulkarni, K.S.Shivaprakasha, -Information Theory & Codingl, Wiley Publications

MOOC / NPTEL Courses:

1. NPTEL Course -Modern Digital Communication Techniques

Link of the Course: https://nptel.ac.in/courses/117/105/117105144/

	Savitribai Phule Pune University					
Third Year of Ele	ectronics and Computer Eng	gineering (2019 Course)				
310344	4:Microcontroller and A	pplications				
Teaching Scheme:	Teaching Scheme:Credit: 03Examination Scheme:					
Theory: 03 Hrs. / week		In-Sem (Theory): 30 Marks				
End-Sem (Theory): 70 Marks						
Prerequisite Courses, if any: D	igital Electronics, Microprocess	ors				
Companion Course, if any:						
 Course Objectives: 1. To understand the applications of Microcontrollers. 2. To understand need of microcontrollers in embedded system. 3. To understand architecture and features of Microcontrollers. 4. To learn interfacing of real world input and output devices. 5. To study various hardware & software tools for developing applications. 6. To learn 8051 and MSP430 Microcontrollers. Course Outcomes: On completion of the course, learner will be able to CO1: Understand architecture and features of microcontrollers. CO2: Describe hardware, software tools and interface peripherals with microcontroller. CO3: Develop an application by interfacing peripherals with microcontroller. 						
CO5: Explain data communi	ication protocols and develop an	application by interfacing peripherals				
with MSP430 microco	ntroller.	ollono				
COO: Design applications usi	Course Contents	oners.				
Unit I Intr	oduction to microcontroller	Architecture (08 Hrs.)				
Microprocessor and microcontroller comparison, Harvard & Von Neumann architecture, RISC & CISC processors. Role of microcontroller in embedded system. Selection criteria of microcontroller. Overview of MCS-51 architecture, Block diagram and explanation of 8051, Port structure, memory organization, Interrupt structure, timers and its modes, serial communication modes. Overview of Instruction set, Programming of Timer 0&1.						
Mapping of Course CO1:	Understand architecture and fe	atures of microcontrollers.				

Outcomes for Unit IInterfacing-I(07 Hrs.)Software and Hardware tools for development of microcontroller based systems such as assemblers, compliers, IDE, Emulators, debuggers, programmers, development board, DSO, Logic Analyzer. Interfacing LED with and without interrupt, Keypads, Seven Segment multiplexed Display, LCD, ADC Interfacing. All Programs in embedded c language.Mapping of Course Outcomes for Unit IICO2: Describe hardware, software tools and interface peripherals with microcontroller.Unit IIIInterfacing-II(06 Hrs.)Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low More Features(07 Hrs.)			
Unit IIInterfacing-I(07 Hrs.)Software and Hardware tools for development of microcontroller based systems such as assemblers, compliers, IDE, Emulators, debuggers, programmers, development board, DSO, Logic Analyzer. Interfacing LED with and without interrupt, Keypads, Seven Segment multiplexed Display, LCD, ADC Interfacing. All Programs in embedded c language.Mapping of Course Outcomes for Unit IICO2: Describe hardware, software tools and interface peripherals with microcontroller.Unit IIIInterfacing-II(06 Hrs.)Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Software and Hardware tools for development of microcontroller based systems such as assemblers, compliers, IDE, Emulators, debuggers, programmers, development board, DSO, Logic Analyzer. Interfacing LED with and without interrupt, Keypads, Seven Segment multiplexed Display, LCD, ADC Interfacing. All Programs in embedded c language.Mapping of Course Outcomes for Unit IICO2: Describe hardware, software tools and interface peripherals with microcontroller.Unit IIIInterfacing-II(06 Hrs.)Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.CO3:Develop an application by interfacing peripherals with microcontroller.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features			
compliers, IDE, Emulators, debuggers, programmers, development board, DSO, Logic Analyzer.Interfacing LED with and without interrupt, Keypads, Seven Segment multiplexed Display, LCD, ADCInterfacing. All Programs in embedded c language.Mapping of Course Outcomes for Unit IICO2: Describe hardware, software tools and interface peripherals with microcontroller.Unit IIIInterfacing-II(06 Hrs.)Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Interfacing LED with and without interrupt, Keypads, Seven Segment multiplexed Display, LCD, ADCInterfacing. All Programs in embedded c language.CO2: Describe hardware, software tools and interface peripherals with microcontroller.Mapping of Course Outcomes for Unit IICO2: Describe hardware, software tools and interface peripherals with microcontroller.Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Interfacing. All Programs in embedded c language.Mapping of Course Outcomes for Unit IICO2: Describe hardware, software tools and interface peripherals with microcontroller.Unit IIIInterfacing-II(06 Hrs.)Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Mapping of Course Outcomes for Unit IICO2: Describe hardware, software tools and interface peripherals with microcontroller.Unit IIIInterfacing-II(06 Hrs.)Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features			
Unit IIIInterfacing-II(06 Hrs.)Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Interfacing peripherals with microcontroller.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.(07 Hrs.)Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Data transmission and reception using Serial port with PC. Interfacing of DAC, Temperature sensors, Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Stepper motor, Motion detectors, Relay, Buzzer, Opto- isolators, All programs in embedded C language.Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Mapping of Course Outcomes for Unit IIICO3:Develop an application by interfacing peripherals with microcontroller.Unit IVMSP430 Microcontroller Architecture and Low Power Features(07 Hrs.)			
Unit IV MSP430 Microcontroller Architecture and Low (07 Hrs.) Power Features Power Features (07 Hrs.)			
Power Features			
Tower reatures			
Low Power 16-bit MSP430x5xx microcontroller architecture, address space, on-chip peripherals (analog			
and digital), and Register sets. Instruction set, instruction formats, and various addressing modes of			
MSP430 devices; Variants of the MSP430 family viz. MSP430x2x, MSP430x4x, MSP430x5x and their			
targeted applications, System clocks. Low Power aspects of MSP430: low power modes, Active vs			
Standby current consumption, FRAM vs Flash for low power; reliability.			
Mapping of Course Outcomes for Unit IVCO4: Understand MSP430 microcontroller architecture and its low power features.			
Unit VReal World Interfacing(06 Hrs.)			
GPIO programming and I/O multiplexing; Interrupts and interrupt programming. Timers and Watchdog			
timer. PWM control. ADC and DAC in MSP430. Interfacing of LED, IR sensor, Buzzer and Relay.			
UART protocol, I2C protocol, SPI protocol.			
Mapping of CourseCO5: Explain data communication protocols and develop an application			

	by interfacing peripherals with NISP430 microcontroller	
Unit VI	Applications using 8051 and MSP430	(06 Hrs.)
	Microcontrollers	

Data acquisition system, Design of frequency counters with display on LCD, Design of water level monitoring system using 8051 Microcontroller. Design of soil monitoring system for agriculture, Home Automation System, Design of environment monitoring system using MSP430 microcontroller. All programs are in embedded C.

Mapping of Course

CO6: Design applications using 8051 and MSP430 microcontrollers.

Outcomes for Unit VI

Learning Resources

Text Books:

1. Mazidi, 8051 microcontroller & embedded system 3rd Edition ,Pearson

2. MSP430 microcontroller basics 1st Edition by John H. Davies (Author), Newness Publication ISBN-

13:978-0750682763

Reference Books:

1. Getting Started with the MSP430 Launch pad by Adrian Fernandez, Dung Dang, Newness publication ISBN-13: 978-0124115880 1

2. I2C data sheets from www.ti.comhttps://onlinecourses.nptel.ac.in/noc22_ee12/course

	Savitribai Phule Pune University				
Third Year of Ele	ctronics and Computer Eng	gineering (2019 (Course)		
31034	5A:Elective I - Distribut	ed Systems			
Teaching Scheme:	Credit: 03	Examination Sche	eme:		
Theory: 03 Hrs. / week		In-Sem (Theory):	30 Marks		
		End-Sem (Theory): 70 Marks		
Prerequisite Courses, if an	y:				
Companion Course, if any	:				
Course Objectives:					
1. To learn the principles, arcl	nitectures, algorithms and program	nming models used i	n distributed		
systems.					
2. To examine state-of-the-art	distributed systems, such as Goog	gle File System.			
3. To design and implement sa	ample distributed systems				
4. To understanding of the principles and techniques behind the design of distributed systems, such as					
locking, concurrency, sched	luling, and communication across	networks.			
5. To design, implement and debug the Distributed systems.					
Course Outcomes: After cor	Course Outcomes: After completion of the course, learner will be able to,				
CO1: Demonstrate the basic co	ncepts and elements of distributed	l system technologie	s.		
CO2: Demonstrate knowledge of	of the core architectural aspects of	distributed systems.			
CO3: Design and implement distributed applications.					
CO4: Demonstrate knowledge of components of distributed systems					
CO5: Use and apply important	methods in distributed systems to	support scalability a	nd fault tolerance.		
CO6: Demonstrate large-scale distributed applications.					
Course Contents					
Unit I	Introduction to distribute	d systems	(07Hrs.)		
Introduction: Definition, Relation	on to computer system compone	ents, Motivation, R	elation to parallel		
systems, Message-passing systems versus shared memory systems, Primitives for distributed					
communication, Synchronous versus asynchronous executions, Design issues and challenges. A model					
of distributed computations: A distributed program, A model of distributed executions, Models of					
communication networks, Global state, Cuts, Past and future cones of an event, Models of process					

communications. Logical Time: A framework for a system of logical clocks, Scalar time, Vector time, Physical clock synchronization: NTP.

Manning of Course	CO1. Demonstrate the basic concepts and elements of dist	tributed system
Outcomes for Unit I	technologies.	induced system
Unit II	Communication In Distributed System	(07Hrs)
		(U/1115.)

System Model, Inter process Communication, the API for internet protocols, External data representation and Multicast communication. Network virtualization: Overlay networks. Case study: MPI Remote Method Invocation And Objects: Remote Invocation–Introduction-Request-reply protocols, Remote procedure call, Remote method invocation. Case study: JavaRMI, Group communication, Publish-subscribe systems, Message queues, Shared memory approaches, Distributed objects, Case study: Enterprise Java Beans, from objects to components.

Mapping of Course Outcomes for Unit II	CO2: Demonstrate knowledge of the core architect distributed systems.	tural aspects of
Unit III	Peer To Peer Services and File System	(06Hrs.)

Peer-to-peer Systems, Introduction, Napster and its legacy, Peer-to-peer Middleware, Routing overlays. Overlay case studies: Pastry, Tapestry, Distributed File Systems, Introduction, File service architecture, Andrew File system. File System: Features, File model, File accessing models, File sharing semantics Naming: Identifiers, Addresses, Name Resolution, Name Space Implementation, Name Caches, LDAP.

Mapping of Course	CO3: Design and implement distributed applications.	
Outcomes for Unit III		
Unit- IV	Synchronization and Replication	(07Hrs.)

Introduction, Clocks, events and process states, Synchronizing physical clocks, Logical time and logical clocks - Global states , Coordination and Agreement, Introduction, Distributed mutual exclusion, Elections Transactions and Concurrency Control, Transactions-Nested transactions , Locks, Optimistic concurrency control, Timestamp ordering, Atomic Commit protocols, Distributed deadlocks, Replication, Case study, Coda.

Mapping of Course Outcomes for Unit IV	CO4: Demonstrate knowledge of components of distribut	ed systems	
Unit-V	Process & Resource Management	(07Hrs.)	
Process Management:	Process Migration: Features, Mechanism, Threads:	Models, Issues,	
Implementation. Resour	ce Management: Introduction, Features of Scheduling	Algorithms, Task	
Assignment Approach, Load Balancing Approach, Load Sharing Approach.			
Mapping of Course	CO5: Use and apply important methods in distributed s	vstems to support	

Mapping of CourseCO5: Use and apply important methods in distributed systems to supportOutcomes for Unit Vscalability and fault tolerance.

	mi	4	VI	
U		ι-		

File system, DFS- definition, Characteristics, Goals, SUN NFS, NFS Architecture, NFS Implementation, Protocols, The CODA file system, Design Overview, An Example, Design Rational, Implementation, The GOOGLE files system-Definition, Architectures, GFS Architecture

Mapping of Course
Outcomes for Unit VICO6: Demonstrate large-scale distributed applications.

Learning Resources

Text Books:

- 1. George Coulouris, Jean Dollimore and Tim Kindberg, -Distributed Systems Concepts and Design∥, Fifth Edition, Pearson Education, 2012.
- 2. Andrew S. Tannenbaum and Maarten Van Steen, Distributed Systems: Principles and Paradigms, Pearson.
- 3. George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair, -Distributed Systems: Concepts and Designl, Addison Wesley.

Reference Books

- 1. Pradeep K. Sinha, "Distributed Operating Systems: Concepts and Design", Prentice Hall of India, 2007.
- 2. Tanenbaum A.S., Van Steen M., -Distributed Systems: Principles and Paradigms^{II}, Pearson Education, 2007.
- 3. Liu M.L., -Distributed Computing, Principles and Applications^{||}, Pearson Education,2004.
- 4. Nancy A Lynch, -Distributed Algorithms ||, Morgan Kaufman Publishers, USA, 2003.
- 5. P. K. Sinha, Distributed Operating Systems: Concepts and Design, IEEE press.
- 6. M. Singhaland, N. G. Shivaratri, -Advanced Concepts in Operating Systems, McGraw-Hill.

Savitribai Phule Pune University			
Third Year of I	Electronics and Computer Eng	gineering (2019 (Course)
31034	5B:Elective I - Blockchair	n Technology	
Teaching Scheme:	Credit: 03	Examination Sche	eme:
Theory: 03 Hrs. / Week		In-Sem (Theory):	30 Marks
		End-Sem (Theory	y): 70 Marks
Prerequisite Courses, if	any: Data Structure, OOPs		
Companion Course, if a	nv:		
Course Objectives:			
1. To introduce Blockchair	Technology		
2. To learn the distributed of	lecentralized system.		
3. To learn hashing in cryp	tography, Ethereum and consensus		
4. To learn bitcoin and its p	process also the blockchain technolog	gy in allied technolog	gies.
Course Outcomes: After completion of the course, learner will be able to,			
CO1: Understand the basic concepts and architecture of Blockchain Technology			
CO2: Demonstrate distribute	CO2: Demonstrate distributed decentralized system, its applications and regulations		
CO3: Demonstrate the appli	cation of hashing in cryptography		
CO4: Demonstrate the verifier	cation process through Ethereum and	d consensus in block	chain technology.
CO5: Illustrate the concepts	of Bitcoin and its process in blockch	ain technology.	
CO6: Understand and illustr Robotics	ate Blockchian with allied technolog	ies such as cloud cor	mputing, AI, IoT,
	Course Contents		
Unit-I	Basics of Blockcha	uin	(07Hrs.)
Introduction, History and Con	cept of Blockchain, Definition of Bl	ockchain, Fundamer	ntals of Blockchain,
Characteristics of Blockchain, Consensus in Trust-Building Exercise, Public, Private, and Hybrid			
Blockchains, Architecture of Blockchain, Transactions, Chaining Blocks,			
Mapping of Course Outcomes for Unit ICO1: Understand the basic concepts and architecture of Blockchain Technology			
Unit-IIDistributed Decentralized System(07Hrs.)			
Introduction, Distributed Ledger Technologies (DLT), Distributed Decentralized Applications and			
Databases, Value Proposition of Blockchain Technology, Decentralized Enterprise, Decentralization,			

Disintermediation, Decentralized Enterprise Regulation.

Mapping of Course Outcomes for Unit II	CO2: Demonstrate distributed decentralized system, its regulations	s applications and
Unit-III	Cryptography and Hash Functions	(06Hrs.)

Cryptography, Cryptography Primitives, Symmetric Cryptography, Introduction of Hash, Asymmetric Cryptography Hashing, Message Authentication Code, Secure Hash Algorithms (SHA-1), Secure Hash Algorithm Version 3, Distributed Hash Tables, Hashing and Data Structures, Hashing in Blockchain Mining

Mapping of Course Outcomes for Unit III	CO3: Demonstrate the application of hashing in cryptogr	aphy
Unit- IV	Blockchain Components & Consensus	(07Hrs.)

Introduction of Ethereum, History, Ethereum Virtual Machine, Working of Ethereum, Ethereum Clients, Ethereum Key Pairs, Ethereum Addresses, Ethereum Wallets, Ethereum Transactions, Ethereum Languages, Ethereum Development Tools Introduction, Consensus Introduction, Consensus Approach, Consensus Algorithms, Byzantine Agreement Methods

Mapping of Course	CO4: Demonstrate the verification process	through	Ethereum	and
Outcomes for Unit IV	consensus in blockchain technology.			
Unit-V	Bitcoins		(07]	Hrs.)

Introduction, Working of Bitcoin, Merkle Trees, Bitcoin Block Structure, Bitcoin Address, Bitcoin Transactions, Bitcoin Network, Bitcoin Wallets, Bitcoin Payments, Bitcoin Clients, Bitcoin Supply

Mapping of Course Outcomes for Unit V	CO5: Illustrate the concepts of Bitcoin and its process technology.	in blockchain
Unit-VI	Blockchain and Allied Technologies	(06Hrs)

Blockchain and Cloud Computing, Characteristics of Blockchain Cloud, Blockchain and Artificial Intelligence, Blockchain and IoT, Blockchain and Machine Learning, Blockchain and Robotic Process Automation

Mapping of Course Outcomes for Unit IV	CO6: Understand and illustrate blockchian with allied technologies such as cloud computing, AI, IoT, Robotics
	Learning Resources

TEXT Books:

- 1. Kumar Saurabh and AshutoshSaxena., -Blockchain Technology: Concepts and Applications^{II}, Wliey Publicaions
- 2. Yathish R , Tejaaswini N, Blockchain For Beginners , Publisher: Shroff/X-Team 2019 Edition
- 3. Don Tapscott, author of Wikinomics, Alex Tapscott, Blockchain Revolution: How the technology behind bitcoin and other cryptocurrencies is changing the worldl, Penguin Publishing Group

References:

- Narayanan, Bonneau, Felten, Miller and Goldfeder, -Bitcoin and Cryptocurrency Technologies A Comprehensive Introduction^{II}, Princeton University Press.
- 2. Josh Thompson, _Blockchain: The Blockchain for Beginnings, Guild to Blockchain Technology and Blockchain Programming⁺, Create Space Independent Publishing Platform, 2017.
- 3. Imran Bashir, -Mastering Blockchain: Distributed ledger technology, decentralization, and smart contracts explained, Packt Publishing.
- 4. Merunas Grincalaitis, -Mastering Ethereum: Implement Advanced Blockchain Applications Using Ethereum-supported Tools, Services, and Protocols, Packt Publishing

NPTEL Link

- 1. Introduction To Blockchain Technology And Applications Link https://nptel.ac.in/courses/106104220
- Prof. Sandip Chakraborty, Dr. Praveen Jayachandran, -Blockchain Architecture Design And Use Casesl[MOOC], NPTEL: <u>https://nptel.ac.in/courses/106/105/106105184/</u>

	Savitribai Phule Pune Univ	ersity		
Third Year of H	Electronics and Computer Eng	gineering (2019 (Course)	
310345	5C:Elective I - Digital Sign	al Processing		
Teaching Scheme:	heme: Credit: 03 Examination Scheme:			
Theory: 03 Hrs. / week	ry: 03 Hrs. / week In-Sem (Theory): 30 Marks			
		End-Sem (Theory): 70 Marks	
Prerequisite Courses, if	any: Signals and Systems			
Companion Course, if a	ny:			
Course Objectives:				
1. To understand DTFT and	IDFT.			
2. To understand, analyze a	nd design FIR and IIR filters.			
3. To understand realization	n of FIR and IIR Filters.			
4. To understand its hardwa	are implementation using DSP Proces	ssor		
Course Outcomes:				
After successful completion o	f this course, the student will be able	to:		
CO1: Apply DFT as an analytical tool.				
CO2: Analyze LTI Systems using FFT algorithms.				
CO3: Design FIR and IIR s	systems.			
CO4: Implement FIR and I	IR Systems.			
CO5: Implement various D	SP Systems on DSP Processor			
	Course Contents			
UNIT I Z	-transform and its application of LTI systems:	to the analysis	(06Hrs.)	
Need for transform, relation b	between Laplace transform and Z tra	nsform, between Fo	urier transform and	
Z transform, Properties of RC	OC and properties of Z transform, Re	elation between pole	locations and time	
domain behavior, causality and stability considerations for LTI systems, Inverse Z transform, Power				
series method, partial fraction expansion method, Solution of difference equations.				
Mapping of Course Outcomes for Unit ICO	Mapping of Course Outcomes for Unit ICO1: Apply DFT as an analytical tool.			
UNIT IIDiscrete Fourier Transform(06Hrs.)				
Frequency domain sampling and reconstruction of discrete time signals – DFT, properties of the DFT, use				
of DFT in linear filtering, filtering of long data sequences, DFT as linear transformation, Efficient				

computation of the DFT- FFT Algorithms, Radix 2 DITFFT and DIFFFT, Goertzel Algorithm.			
Mapping of Course Outcomes for Unit II	CO2: Analyze LTI Systems using FFT algorithms		
UNIT III	Design of IIR filters & FIR Filter	(06Hrs.)	
IIR:- Classical design	by impulse invariance, bilinear transformation and mate	ched Z transform,	
characteristics and design	n of commonly used filters – butter worth, Chebyshev and elli	ptic filters, Spectral	
transformations, Direct d	esign of IIR filters.		
FIR:- General considerat	ions, Linear phase FIR Filters, Symmetric and anti-symmetric	c impulse response,	
Design using windows, f	requency sampling design, Optimum design.		
Mapping of Course Outcomes for Unit III	CO3: Design FIR and IIR systems		
UNIT IV	Implementation of Discrete time Systems	(06Hrs.)	
Structures for FIR syste	ems – Direct form, cascade form, Frequency sampling and	l lattice structures.	
Structures for IIR system	ns – Direct form, cascade and parallel form, lattice ladder stru	ctures. Finite word	
length effects.			
Mapping of Course Outcomes for Unit IV	CO4: Implement FIR and IIR Systems.		
UNIT V	Multi rate Signal processing	(06Hrs.)	
Multi rate Signal Proces	ssing:-Sampling rate reduction: decimation by integer facto	rs, Sampling rate	
increase: interpolation by	integer factors, sampling rate conversion by non integer factor	rs	
Mapping of Course Outcomes for Unit V	CO5: Implement various DSP Systems on DSP Processor		
UNIT VI	DSP Processors and Application of DSP	(06Hrs.)	
DSP Processors: -Need	for Special architecture of DSP processor, Difference betwee	n DSP processor &	
microprocessor, a genera	l DSP processor TMS320C54XX series,		
Application of DSP: -	Case study of Real Time DSP applications to Speech Sign	nal Processing and	
Biomedical Signal Proce	ssing		
Mapping of Course Outcomes for Unit VI	CO6:		
Learning Resources			
TEXTBOOK: 1. Proakis J.G and. Manolakis D.G. Mimitris D. (2003) —Introduction to Digital Signal Processing Prentice Hall, India			
REFERENCES: 1. Oppenheim A. V. and Schafer R.W. (2003) —Discrete Time Signal Processing ^{II} , Pearson education. 2. Ifeachar and Jervis (2003) —Digital Signal Processing: A Practical approach ^{II} Pearson education, Asia			

3. Rabiner L.R and Gold D.J (1988) —Theory and applications of digital signal processing Prentice Hall, India

MOOC / NPTEL Courses:

1. NPTEL Course on -Digital Signal Processing

Link of the Course: https://nptel.ac.in/courses/117/102/117102060/

2. NPTEL Course on -Digital Signal Processing

Link of the Course: https://nptel.ac.in/courses/108/105/108105055/

Third Year of Electronics and Computer Engineering (2019 Course)

310345	5D:Elective I - Sensors and	Applications	
Teaching Scheme:	Credit: 03	Examination Scheme:	
Theory: 03 Hrs. / week		In-Sem (Theory): 30 Ma	arks
		End-Sem (Theory): 70 M	Aarks
Prerequisite Courses, if any	: Basic Electronics Engineering		
Companion Course, if any:	-		
Course Objectives: 1. Explain the operation/we	orking principle of different sensors.		
2. Compare various sensors	s and select appropriate sensor for a p	articular application.	
3. To impart interdisciplina	ary knowledge regarding sensors and	actuators.	
4. Explain the advanced set	nsor fabrication techniques like MEM	1S.	
5. Explain industrial applic	cations of sensors and transducers.		
Course Outcomes: On co	mpletion of the course, learner will b	e able to -	
CO1: Classify sensors/trans	ducers and describe important perfo	rmance measures, termino	logy of
sensors/instrumentation	on systems.		
CO2: Compare various tem	nperature sensors, design signal con-	ditioning circuits for tempe	erature
sensors and describe	working principles of chemical senso	rs.	
CO3: Compare various flow	w and level sensing techniques and	select appropriate techniqu	ue for a
specific application.			
CO4: Describe working prin	nciples of motion, light and radiation	detectors.	
CO5: Describe construction	and working principle of MEMS and	1 SMART sensors.	
CO6: Select appropriate Swi	itches and final control elements for a	a specific application	
	Course Contents		
Unit I	Fundamentals of Sensors &	Transducer	(06 Hrs.)
Definitions sensors & tran	nsducer, Classification of sensors	and transducers, Perfo	ormance and
Terminology: Accuracy, pre-	cision, resolution, threshold, sensiti	vity, linearity, hysteresis,	drift, range,
span, speed of response, meas	span, speed of response, measuring lag, fidelity, dynamic error.		
Advantages, disadvantages & applications of sensors and transducers, Block diagram and description of			
Instrumentation system.			
Instrument calibration- definition, benefits of calibration, Measurement Standards-International System of			

Units (SI), Calibration Chain and Traceability, Calibration procedure.

Mapping of Course	CO1: Classify sensors/transducers and describe import	rtant performance
Outcomes for Unit I	measures, terminology of sensors/instrumentation system	S.
Unit II	Temperature & Chemical sensors	(06 Hrs.)

Temperature: RTD, thermistors, thermocouples, noncontact temperature measurement- pyrometers.

Semiconductor temperature sensing (LM75), Signal conditioning circuit for RTD and Thermocouple,

Interfacing technique of Temperature sensors with microcontroller. Acoustics sensors for sound level measurement, Humidity Sensors.

Chemical sensors: classes of chemical sensors, Characteristics of chemical sensors, biochemical sensors, electronics noses.

Mapping of Course Outcomes for Unit II	CO2: Compare various temperature sensors, design si circuits for temperature sensors and describe working chemical sensors.	gnal conditioning principles of
Unit III	Flow and Level Sensing	(07 Hrs.)

Flow: Bernoulli Equation, Differential head type flow meters (Orifice, Venturi tube and Flow Nozzle), Pitot static tube, Variable area type flow meter – Rotameter, vortex shedding, Electromagnetic, ultrasonic flow meters, hot wire anemometers.

Level: Float, DP Cell, Ultrasonic, Capacitance probe type, Hydrostatic pressure and Nuclear level detection techniques.

Mapping of Course Outcomes for Unit III	CO3: Compare various flow and level sensing techn appropriate technique for a specific application.	iques and select
Unit IV	Weight, Motion, Light & Radiation Detectors	(07 Hrs.)

Weight- Load Cell and strain gauges, strain gauge signal conditioning.

Displacement- LVDT ,Ultrasonic, capacitive detectors, Proximity sensors (inductive, optical and capacitive)

Velocity-Absolute and incremental encoders.

Acceleration- Accelerometer characteristics, capacitive accelerometers, Piezoelectric Accelerometer,

Piezo-resistive accelerometer, thermal accelerometer.

Light & Radiation detectors: Photo diodes, photo transistor, CCD, CMOS image sensors, gas flame detectors, Radiation detectors.

Mapping of Course Outcomes for Unit IV	CO4: Describe working principles of motion, light and ra	idiation detectors.
Unit V	MEMS & Smart sensors	(06 Hrs.)
Magnetic field sensors	- Hall effect and magneto-resistive elements (MRE), n	nagneto-transistors,
piezoelectric (PZT) se	nsors and actuators. Microelectromechanical systems	(MEMS) – Bulk

micromachining, micro-machined absolute pressure sensor, Surface Micromachining-Hot wire anemometer micro-miniature temperature sensor, surface micromachined accelerometer and SMART sensors.

Mapping of Course Outcomes for Unit V	CO5: Describe construction and working principle of MI sensors.	EMS and SMART
Unit VI	Actuators and Final Control Elements	(06 Hrs.)

Pneumatic and hydraulic actuators- Directional control valves, Pressure control valves, Cylinders, Process control valves - Electrical actuators- Mechanical switches, Solid state switches, Solenoids, DC motors, AC motors and Stepper motors.

Mapping of Course	CO6: Select appropriate Switches and final control elements for a specific
Outcomes for Unit VI	application.

Learning Resources

Text Books:

- W. Bolton; Mechatronics, Electronic Control Systems in Mechanical and Electrical Engineeringl; Pearson Education; 3rd Edition
- William C. Dunn,—Introduction to Instrumentation, Sensors, and Process Controll, Artech House Sensors Library.

Reference Books:

- Curtis Johnson; Process Control Instrumentation Technology I; Prentice Hall of India Pvt. Ltd.;7th Edition
- Ernest O. Doebelin; —Measurement System Application and Design I; Mc-Graw Hill; 5th Edition
- David G. Alciatore, Michael B Histand; Introduction to Mechatronics and Measurement System I; Tata McGraw Hill
- C.S. Rangan, G.R. Sarma, V.S.V. Mani; Instrumentation Devices and Systems I; Tata McGraw Hill; 2nd Edition.

MOOC / NPTEL Courses:

- 1. Industrial Instrumentation, https://nptel.ac.in/courses/108105064
- 2. NOC: Sensors and Actuators, https://nptel.ac.in/courses/108108147

Third Year of Electronics and Computer Engineering (2019 Course)

310346: Database Management Systems Lab

Teaching Scheme:	Credit: 02	Examination Scheme:
Practical: 02 Hrs. / week		Oral: 25 Marks
		Termwork: 25 Marks
Prerequisite Courses, if any: -		
Companion Course, if any: Database Management System		
List of Laboratory Experiments		
Group A- Database Programming Languages – SQL		
1. Design and develop SQL DDL statements which demonstrate the use of SQL objects such as Table,		
View. Index. Sequence and Synonym		

- 2. Design and develop SQL queries for suitable database application using SQL DML statements: Insert, Select, Update and Delete with operators and functions.
- **3.** Design and develop at least 5 SQL queries for suitable database application using SQL DML statements: all types of Join and Sub-Query.

Group B- Database Programming Languages – PL / SQL

4. Write a Stored Procedure namely calculate_fine for the following requirements:-

Schema:

Borrower (Roll no., Name, Date of Issue, Name of Book, Status)

Fine (Roll no, Date, Amt.)

- Accept roll no. & name of book from user.
- Check the number of days (from date of issue), if days are between 15 and 30, then fine amount will be Rs 5 per day.
- If no. of days>30, per day fine will be Rs 50 per day & for days less than 30, Rs. 5 per day.
- After submitting the book, status will change from I to R.
- If condition of fine is true, then details will be stored into fine table.

Write a PL/SQL block for using procedure created with above requirement.

- 5. Write a PL/SQL block of code using parameterized Cursor that will merge the data available in the newly created table N_RollCall with the data available in the table O_RollCall. If the data in the first table already exist in the second table then that data should be skipped.
- 6. Database Trigger: Write a database trigger on Library table. The System should keep track of the records that are being updated or deleted. The old value of updated or deleted records should be added

in Library_Audit table.

Group C- Database Programming Languages – No SQL

- 7. Mongo DB queries: Design and Develop Mango DB Queries using CRUD operations.(use CRUD operations, SAVE Method and logical operators)
- Mango DB Aggregation and Indexing: Design and Develop Mango DB Queries using Aggregation and Indexing with suitable example.
- Mango DB Map reduces operations: Implement Map reduces operation with suitable example using Mango DB

Group D- Mini Project: Database Project Life Cycle

10. Design and develop database application with following details:

- Requirement Gathering and Scope finalization
- Database Analysis and Design:
 - > Design Entity Relationship Model, Relational Model, Database Normalization
 - ➢ Implementation :
 - Front End : Java/Perl/PHP/Python/Ruby/.net
 - Backend : MYSQL/Oracle/ MongoDB
 - Database Connectivity : ODBC/JDBC
- Testing: Data Validation
- Group of students should submit the Project Report which will consist of documentation related to different phases of Software Development Life Cycle: Title of the Project, Abstract, Introduction, scope, Requirements, Data Modeling features, Data Dictionary, Relational Database Design, Database Normalization, Graphical User Interface, Source Code, Testing document, Conclusion

Virtual LAB Links:

Link of the Virtual Lab: http://vlabs.iitb.ac.in/vlabs-dev/labs/dblab/index.php

Third Year of Electronics and Computer Engineering (2019 Course)

310347:Advanced Java Programming Lab

Teaching Scheme:	Credit: 01	Examination Scheme:
Theory: 02 Hrs. / week		Oral: 25 Marks

List of Laboratory Experiments

Group A (All are Compulsory)

- Write a program to demonstrate status of key on an Applet window such as KeyPressed, KeyReleased, KeyUp, KeyDown.
- 2. Write a program to create a frame using AWT. Implement mouseClicked, mouseEntered() and mouseExited() events. Frame should become visible when the mouse enters it.
- 3. Develop a GUI which accepts the information regarding the marks for all the subjects of a student in the examination. Display the result for a student in a separate window.
- 4. Write a program to insert and retrieve the data from the database using JDBC.
- 5. Develop an RMI application which accepts a string or a number and checks that string or number is palindrome or not.
- 6. Write a program to demonstrate the use of InetAddress class and its factory methods.

Group B (Any Two)

7. A. Write Servlet (procedure for client side) to display the username and password accepted from the client.

B. Write Servlet (procedure for server side) to display the username and password accepted from the client.

- 8. Write program with suitable example to develop your remote interface, implement your RMI server, implement application that create your server, also develop security policy file.
- 9. Write a database application that uses any JDBC driver.

Group C (Any Two)

- 10. Write a simple JSP page to display a simple message (It may be a simple html page).
- 11. Create login form and perform state management using Cookies, Http Session and URL Rewriting.
- 12. Create a simple calculator application using servlet.
- 13. Create a registration servlet in Java using JDBC. Accept the details such as Username, Password, Email, and Country from the user using HTML Form and store the registration details in the database

Savitribai Phule Pune University

Third Year of Electronics and Computer Engineering (2019 Course)			
310348:Data Communication Lab			
Teaching Scheme:	eaching Scheme: Credit: 01 Examination Scheme:		
Theory: 02 Hrs / week		Practical: 50 Marks	
Prerequisite Courses, if any: Pri	nciples of Communication System		
Companion Course, if any: Data	a Communications		
List of Laboratory Experiments			
Group A: All experiments are co	ompulsory.		
1. Study of Network devices: H	ubs/Repeaters, Switches, Bridges,	Routers.	
2. Experimental study of ASK 1	nodulation and demodulation		
3. Experimental study of FSK n	nodulation and demodulation		
4. Experimental study of PSK modulation and demodulation			
5. Experimental study of QPSK and OQPSK modulation and demodulation			
6. Design and study of PN sequence generator.			
7. Experimental study of generation and detection of Spread Spectrum System (DSSS)			
Group B: Software Assignments: (Any Three)			
8. Simulation study of Performance of M-aryPSK.			
9. Simulation study of Performance of M-ary QAM.			
10. Implementation of linear block code by using suitable software.			
11. Implementation of Shannon Fano codes using suitable software.			
12. Implementation of Huffman codes_using suitable software.			
Virtual LAB Links:			
1. Link: <u>https://www.etti.unibw.de/labalive/index/digitalmodulation/</u>			
2. Link: https://vlab.amrita.edu/index.php?sub=59&brch=163∼=262&cnt=970			

Third Year of Electronics and Computer Engineering (2019 Course)

310349:Microcontroller and Applications Lab

Teaching Scheme:	Credit: 01	Examination Scheme:
Theory: 02 Hrs. / week		Practical: 50 Marks

Microcontroller and Application Experiments:

List of Experiments:

Group A (Any 04)

- 1. Interfacing LED bank to 8051 microcontroller using timer with interrupt.
- 2. Interfacing Seven Segment Display to 8051 microcontroller
- 3. Interfacing DAC to 8051 microcontroller for generating various waveforms
- 4. Interfacing stepper motor to 8051 microcontroller.
- 5. Interfacing of LCD to 8051 microcontroller.

Group B (Any 04)

- 6. Learn and understand how to configure MSP-EXP430G2 digital I/O pins. Write a C program for configuration of GPIO ports for MSP430 (blinking LEDs, push buttons interface).
 Exercises:
 - a) Modify the code to make the green and red LEDs blink.
 - b) Modify the delay with which the LED blinks.
- Implement Pulse Width Modulation to control the brightness of the on-board, green LED. This experiment will help you to learn and understand the configuration of PWM and Timer peripherals of the MSP430G2553.

Exercises: a) Observe the PWM waveform on a particular pin using CRO.

- 8. Interface IR sensor with MSP430G2553 to detect intruder and turn on buzzer.
- Interface relay with MSP430G2553 and write embedded C program to turn on and off relay and DC motor.

Third Year of Electronics and Computer Engineering (2019 Course)

310350:Data Analytics using Python Lab

Teaching Scheme:	Credit: 01	Examination Scheme:
Theory: 02 Hrs. / week		Termwork: 25 Marks

List of Experiments:

1. Introduction to data analytics and Python fundamentals:

- Understanding the Data.
- Python Packages for Data Science.
- Importing and Exporting Data in Python.
- Getting Started Analyzing Data in Python.
- Accessing Databases with Python.

2. Data Visualization in Python:

- Matplotlib, Pandas, Seaborn: Sactterplot, Barchart, Linechart, Histogram.
- Other Graphs: Boxplot, Heatmap, Faceting, Pairplot.

3. Data Wrangling:

- Pre-processing Data in Python
- Dealing with Missing Values in Python
- Data Formatting in Python
- Data Normalization in Python
- Binning in Python
- Turning categorical variables into quantitative variables in Python

4. Statistical Data Analysis:

- Probability.
- Sampling & Sampling Distributions.
- Hypothesis Testing.

5. Exploratory Data Analysis:

- Descriptive Statistics.
- Group By in Python.
- Correlation.
- Correlation Statistics.
- Analysis of Variance ANOVA.

6. Model Development:

- Linear Regression and Multiple Linear Regression
- Model Evaluation using Visualization
- Polynomial Regression and Pipelines
- Measures for In-Sample Evaluation
- Prediction and Decision Making

Learning Resources:

Reference Books:

- 1. Jake Vander Plas and O'Reilly, -Python Data Science Handbook: Essential Tools for Working with Data
- 2. Wes McKinney and O'Reilly, -Python for Data Analysisl, 2nd Edition.
- 3. Joel Grus and O'Reilly, -Data Science from Scratch: First Principles with Python.

Web resources:

- 1. https://swayam.gov.in/nd1_noc20_cs46/
- 2. https://www.coursera.org/learn/data-analysis-with-python
- 3. https://www.geeksforgeeks.org/python-for-data-science/
- 4. <u>https://www.coursera.org/learn/python-data-analysis/home/welcome/</u>
- 5. <u>https://www.udemy.com/course/data-science-with-python-a-complete-guide-3-in-1/</u>

Third Year of Electronics and Computer Engineering (2019 Course)

310351A:Mandatory Audit Course 5

Teaching Scheme:	Credit:	Examination Scheme:

List of Courses to be opted (Any one) under Mandatory Audit Course 5

- Cyber Security
- Professional Ethic sand Etiquettes
- Engineering Economics
- Foreign Language
- MOOC-Learn New Skills

GUIDELINES FOR CONDUCTION OF AUDIT COURSE

In addition to credits courses, it is mandatory that there should be audit course (non-credit course) from second year of Engineering. The student will be awarded grade as AP on successful completion of audit course. The student may opt for two of the audit courses (One in each semester). Such audit courses can help the student to get awareness of different issues which make impact on human lives and enhance their skill sets to improve their employability. List of audit courses offered in the semester is provided in the curriculum. Student can choose one of the audit course from list of courses mentioned. Evaluation of audit course will be done at institute level.

The student registered for audit course shall be awarded the grade AP and shall be included such grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory in-semester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not accounted in the calculation of the performance indices SGPA and CGPA. Evaluation of audit course will be done at institute level itself.

Selecting an Audit Course:

Using NPTEL Platform:

NPTEL is an initiative by MHRD to enhance learning effectiveness in the field of technical education by developing curriculum based video courses and web based e-courses. The details of
NPTEL courses are available on its official website www.nptel.ac.in

- 1. Student can select any one of the courses mentioned above and has to register for the corresponding online course available on the NPTEL platform as an Audit course.
- 2. Once the course is completed the student can appear for the examination as per the guidelines on the NPTEL portal.
- 3. After clearing the examination successfully; student will be awarded with certificate.

Assessment of an Audit Course:

- 1. The assessment of the course will be done at the institute level. The institute has to maintain the record of the various audit courses opted by the students. The audit course opted by the students could be interdisciplinary.
- 2. During the course students will be submitting the online assignments. A copy of same students can submit as a part of term work for the corresponding Audit course.
- 3. On the satisfactory submission of assignments, the institute can mark as -Present and the student will be awarded the grade AP on the marksheet.

SEMESTER - VI

Third Year of Electronics and Computer Engineering (2019 Course)

310352:Software Engineering and Project Management

Teaching Scheme:	Credit: 03	Examination Scheme:
Theory: 03 Hrs. / week		In-Sem (Theory): 30 Marks End-Sem (Theory): 70 Marks

Prerequisite Courses, if any: Principle of programming Language **Companion Course, if any:**

Course Objectives: The main objective of this course is to introduce the students to software engineering- the fundaments of software engineering principles and practices, including project management, configurations management, requirements definition, system analysis, design, testing, and deployment with hands-on experience in a group software development project.

- 1. To learn and understand the principles of Software Engineering.
- 2. To be acquainted with methods of capturing, specifying, visualizing and analyzing software requirements.
- 3. To apply design and testing principles to software project development.
- 4. To understand project management through life cycle of the project.

Course Outcomes: On completion of the course, learner will be able to -

CO1: Analyze software requirements and formulate design solution for a software.

- **CO2: Design** applicable solutions in one or more application domains using software engineering approaches that integrate ethical, social, legal and economic concerns.
- **CO3:** Apply new software models, techniques and technologies to bring out innovative and novelistic solutions for the growth of the society in all aspects and evolving into their continuous professional development.
- **CO4:** Model and design User interface and component-level.
- CO5: Identify and handle risk management and software configuration management.

CO6: Utilize knowledge of software testing approaches, approaches to verification and validation.

Course Contents					
Unit I	Introduction to Software Engineering and	(06 Hrs.)			
	Software Process Models				
Software Engineering Fundamentals: Introduction to software engineering, The Nature of Software,					
Defining Software, Software Engineering Practice. Software Process: A Generic Process Model,					

defining a Framework Activity, Identifying a Task Set, Process Patterns, Process Assessment and

Improvement, Prescriptive Process Models, The Waterfall Model, Incremental Process Models, Evolutionary Process Models, Concurrent Models, A Final Word on Evolutionary Processes. Unified Process, Agile software development: Agile methods, plan driven and agile development.

Mapping of	CO1: Analyze software requirements and formulate des	sign solution for
Course Outcomes for Unit I	Fsoftware.	
Unit II	Software Requirements Engineering and Analysis	(07 Hrs.)

Modeling: Requirements Engineering, Establishing the Groundwork, Identifying Stakeholders, Recognizing Multiple Viewpoints, Working toward Collaboration, Asking the First Questions, Eliciting Requirements, Collaborative Requirements Gathering, Usage Scenarios, Elicitation Work Products, Developing Use Cases, Building the Requirements Model, Elements of the Requirements Model, Negotiating Requirements, Validating Requirements.

Suggested Free Open Source tools: StarUML, Modelio, SmartDraw.

Mapping of	CO2: Design applicable solutions in one or more application domains using
Course Outcomes for Unit II	software engineering approaches that integrate ethical, social, legal and
	economic concerns.

Unit III		Estimation and Scheduling			(07 Hrs.)					
Estimation for Se	oftware	Projects:	The	Project	Planning	Process,	Defining	Software	Scope	and

Checking Feasibility, Resources management, Reusable Software Resources, Environmental Resources, Software Project Estimation, Decomposition Techniques, Software Sizing, Problem-Based Estimation, LOC-Based Estimation, FP-Based Estimation, Object Point (OP)-based estimation, Process- Based Estimation, Estimation with Use Cases, Use-Case–Based Estimation, Reconciling Estimates, Empirical Estimation Models, The Structure of Estimation Models

Project Scheduling: Project Scheduling, Defining a Task for the Software Project, Scheduling.

Suggested Free Open Source Tools: Gantt Project, Agantty, Project Libre.

Unit IV

Mapping of	CO3: Apply new software models, techniques and technologies to bring out
Course Outcomes for Unit III	innovative and novelistic solutions for the growth of the society in all
	aspects and evolving into their continuous professional development.

Design Engineering

(07 Hrs.)

Design Concepts: Design within the Context of Software Engineering, The Design Process, Software Quality Guidelines and Attributes, Design Concepts - Abstraction, Architecture, design Patterns, Separation of Concerns, Modularity, Information Hiding, Functional Independence, Refinement, Aspects, Refactoring, Object-Oriented Design Concept, Design Classes, The Design Model, Data Design Elements, Architectural Design Elements, Interface Design Elements, Component-Level Design Elements, Component Level Design for Web Apps, Content Design at the Component Level, Functional

Design at the Component Level, Deployment-Level Design Elements.

Architectural Design: Software Architecture, What is Architecture, Why is Architecture Important, Architectural Styles, A brief Taxonomy of Architectural Styles.

Suggested Free Open Source Tool: Smart Draw

Mapping of Course Outcomes for Unit IV	CO4: Model and design User interface and component-leve	el.
Unit V	Risks and Configuration Management	(07 Hrs.)

Risk Management: Software Risks, Risk Identification, Risk Projection, Risk Refinement, Risk Mitigation, Monitoring, and Management, The RMMM Plan.

Software Configuration Management: Software Configuration Management, The SCM Repository The

SCM Process, Configuration Management for any suitable software system.

Suggested Free Open Source Tools: CF Engine Configuration Tool, Puppet Configuration Tool.

Mapping of	CO5: Identify and	handle risk	management	and so	ftware configuration
Course Outcomes for Unit V	management.				
Unit VI	So	ftware Test	ing		(07 Hrs.)

Introduction to software testing, Principal of Testing, Testing Life Cycle, Phases of Testing, Types of

Testing. Verification & Validation, Defect Management, Defect Life Cycle, Bug Reporting, GUI Testing, Test Management and Automation.

Mapping of	CO6: Utilize knowledge of software testing approaches, approaches to
Course Outcomes	varification and validation
for Unit VI	vermeation and vandation.

Learning Resources

Text Books:

- Roger Pressman, -Software Engineering: A Practitioner_s ApproachIII, McGraw Hill, ISBN 0− 07− 337597−7
- 2. Ian Sommerville, -Software Engineering II, Addison and Wesley, ISBN 0-13-703515-2

Reference Books:

- 1. Carlo Ghezzi, —Fundamentals of Software Engineering", PHI, ISBN-10: 0133056996
- 2. Rajib Mall, -Fundamentals of Software Engineering II, PHI, ISBN-13: 978-8120348981
- **3.** PankajJalote, -An Integrated Approach to Software EngineeringIII, Springer, ISBN 13: 9788173192715.
- **4.** S K Chang, -Handbook of Software Engineering and Knowledge Engineering III, World Scientific, Vol I, II, ISBN: 978-981-02-4973-1
- Tom Halt, -Handbook of Software Engineering II, Clanye International ISBN-10: 1632402939

MOOC / NPTEL Courses:

1. NPTEL Course "Software Engineering" https://onlinecourses.nptel.ac.in/noc19_cs69/preview

2. NPTEL Course on "Software Engineering" https://swayam.gov.in/nd2_cec20_cs07/preview

Savitribai Phule Pune University					
Third Year of Electronics and Computer Engineering (2019 Course)					
310353:Computer Networks and Security					
Teaching Scheme:		Credit: 03	Examination Sche	me:	
Theory: 03 Hrs. / week			In-Sem (Theory):	30 Marks	
			End-Sem (Theory)): 70 Marks	
Prerequisite Courses	, if any	y: -			
Companion Course, i	if any:				
Course Objectives:					
1. To understand state-o	of-the-a	rt in network protocols, architectu	res, and application	S	
2. To provide students	with a tl	heoretical and practical base in co	mputer networks iss	ues	
3. To outline the basic r	network	configurations			
4. To understand the tra	insmissi	ion methods underlying LAN and	WAN technologies.		
5. To understand securi	ty issue	s involved in LAN and Internet			
Course Outcomes:					
After successfully completi	ng the c	course students will be able to			
CO1: Understand fundame	ental pri	nciples of computer networking			
CO2: Describe and analyze	e the ha	rdware, software, components of a	network and their into	errelations.	
CO3: Analyze the require	ments fo	or a given organizational structure	e and select the most	appropriate	
networking architect	ture and	technologies			
CO4: Have a basic knowle	dge of i	nstalling and configuring networki	ng applications.		
CO5: Specify and identify	deficier	ncies in existing protocols, and ther	n go onto select new a	and better protocols.	
CO6: Have a basic knowle	dge of t	he use of cryptography and networ	k security.		
Unit I]	Introduction to Computer I	Networks	(06 Hrs.)	
Definition & Uses of con	mputer	Network, Network Hardware-LA	N, WAN, MAN &	Internet, Network	
Software-design Issues for	layers,	, Service primitives and relations	hip of services to P	rotocols, Reference	
models-OSI &TCP/IP, network architectures introduction, Addressing types-Physical, Logical & port address,					
Protocols and Standards.					
Mapping of Course Outcomes for Unit ICO1: Understand fundamental principles of computer networking					
Unit II		Physical Layer		(06 Hrs.)	
Physical layer-Data rate limits, Transmission media-guided and Unguided, Switching systems- Circuit					
switching, Datagram Switching & Virtual circuit switching, Example of networks- X.25, Frame Relay &					
ATM, Structure of circuit and packet switch networks, cable modem and DSL technologies, Communication					

satellites (LEO/MEO/GEO), Introduction to physical layer in 802.11 LAN & 802.15 WPAN.

(,,, _,						
Mapping of Course Outcomes for Unit II	CO2: Describe and analyze the hardware, software, comp network and their interrelations.	ponents of a				
Unit III	Data link layer	(06 Hrs.)				
Data link layer: Framing,	Data link layer: Framing, Flow & Error control Protocols, noiseless channels, Noisy channels, HDLC, PPP,					
Multiple access techniqu	les-random access, controlled access & Channelization, Ethe	ernet types-bridged,				
Switched, Full duplex, Fa	ast & gigabit Ethernet. Introduction to Data link layer in 802.1	1 LAN, Connecting				
devices like passive hubs,	repeaters, Active hubs, Bridges, Two-layer Switches, Routers, t	hree layer switches,				
Gateway etc., Backbone n	etworks, Virtual LANs.					
Mapping of Course Outcomes for Unit III	CO3: Analyze the requirements for a given organizational select the most appropriate networking architecture and	l structure and technologies				
Unit IV	Network Layer and Transport Layer	(06 Hrs.)				
Network Layer: IPv4 add	ress, IPv6 address, Address mapping-ARP, RARP & DHCP, I	Pv4 datagram detail				
format, IPv6 datagram d	etail format, ICMP, IGMP, Network layer issues like Deliver	y, forwarding, intra				
domain and Inter domain	routing, Routing algorithms like Shortest path routing, Floodi	ng, Distance Vector				
Routing, Link State Routi	ing, Path vector routing etc., Simple Router architecture. Transp	port layer-Process to				
process delivery, Connect	ion oriented & Connectionless Transport, UDP, TCP, congestion	control and Quality				
of Service.						
Mapping of Course Outcomes for Unit IV	CO4: Have a basic knowledge of installing and config applications.	uring networking				
Unit V	Application Layer	(06 Hrs.)				
Application layer protoco	Is and applications like Ping, FTP, telnet, http (www), SMTP, S	SNMP, Trace route,				
TFTP, BOOTP, DNS, NF	S, RPC, X-server, E-mail, Introduction to streaming Audio/Vid	eo,P2P file sharing,				
Introduction to socket & Socket Interface, Introduction to HTML programming.						
Mapping of Course Outcomes for Unit VCO5: Specify and identify deficiencies in existing protocols, and then go onto select new and better protocols.						
Unit VI	Basics of Network Security and Network administration	(06 Hrs.)				
Network security: Introduction to Cryptography, Secret key algorithm, public key algorithm, Hash Functions,						
Basics of Security Req	uirements/Services/Dimensions, Basics of Security attacks,	Basics of Security				

mechanisms / solutions. Network Administration: UTP Cabling for PC to PC communication, Network tester, network monitoring, Protocol Analyzer, Network Simulation, internet access through Dialup/DSL/Leased Line/Mobile handset.

Mapping of CourseCO6: Have a basic knowledge of the use of cryptography and networkOutcomes for Unit VIsecurity

Learning Resources

Text Books

1.Behrouz A. Forouzan, Data Communications and Networking, 4th Edition, TATA McGraw Hill

2. Andrew Tenenbaum, Computer Networks, 4th Edition, Pearson Education.

Reference Books

- 1. William Stallings, Computer Networks and Cryptography, 3rd edition, Pearson Education
- 2. Behrouz A. Forouzan, TCP/IP protocol Suit, 3rd edition, TATA McGraw Hill
- 3. Stevens, TCP/IP illustrated Volume I & II, Pearson education.
- 4. Feibel Werner, Encyclopaedia of networking, Pearson education.
- 5. Frank J. Derfler, Practical Networking, 2nd edition, QUE international Publishing.
- 6. AtulKahate, Cryptography and Network Security, 2nd edition, TATA McGraw Hill
- 7.Kenneth Mansfield, Computer Networking from LANs to WANs: Hardware, Software & Security, CENGAGE learning.
- 8. NurulSarkar, Computer Networking & Hardware concepts, Information Science Publisher, USA. 9. Kurose

& Ross, Computer Networking: A top Down Approach featuring the Internet. 3rd edition, Pearson Education

Savitribai Phule Pune University Third Year of Electronics and Computer Engineering (2019 Course) **310354: Embedded Processors and Applications Teaching Scheme:** Credit: 03 **Examination Scheme:** Theory: 03 Hrs. / week Insem (Theory): 30 Marks Endsem (Theory): 70 Marks Prerequisite Courses, if any: Microcontroller and its Applications **Companion Course, if any: Course Objectives:** 1. To study the architecture of ARM series microprocessor 2. To study LPC2148 ARM7 microcontroller. 3. To study interfacing advanced peripherals to LPC2148 microcontroller 4. Study of ARM cortex architectures and its feature. 5. To learn about Embedded system for IoT application using ARM processors **Course outcomes:** After successful completion of the course students are able to **CO1:** Demonstrate the ARM architectures and its feature. **CO2:** Understand ARM7 Based Microcontroller LPC 2148 architecture **CO3:** Interface the advanced peripherals to ARM based microcontroller CO4: Demonstrate the ARM cortex M3 architectures and its feature. CO5: Understand ARM CORTEX M4 based Microcontroller STM32F4xx architecture CO6: Design simple applications using ARM and IoT **Mapping of Course CO1: Demonstrate the ARM architectures and its feature. Outcomes for Unit I** Unit I **ARM7, ARM9, ARM11 Processors** (07Hrs.) Introduction to ARM processors and its versions, ARM7, ARM9 & ARM11 features and applications, advantages & suitability of ARM processors for embedded application, ARM7 TDMI architecture / Core diagram, registers, CPSR, SPSR, Barrel shifter, ARM7 data flow model, programmers model, modes of operations, Addressing mode and instruction set. **Mapping of Course** CO2: Understand ARM7 Based Microcontroller LPC 2148 architecture **Outcomes for Unit II ARM7 Based Microcontroller LPC 2148** Unit II (06 Hrs.) ARM7 Based Microcontroller LPC2148: Features, Architecture its Description, System Control Block (PLL and VPB divider), GPIO, Pin Connect Block, timer, interfacing with LED, LCD, Relay, Buzzer, Motion sensor, soil moisture sensor..

Mapping of Course Outcomes for Unit III	CO3: Interface the advanced peripherals to ARM based	microcontroller			
Unit III	Real World Interfacing with LPC 2148	(06 Hrs.)			
UART of LPC 2148, interfacing of LPC 2148 with PC using UART and embedded C program to send					
message to PC, interfacing	ng the peripherals to LPC2148: GSM and GPS using UART ((only algorithm and			
flow chart), on-chip ADC	C, EEPROM interfacing using I2C, on-chip DAC and its appl	ications for			
waveform generation.					
Mapping of Course Outcomes for Unit IV	CO4: Demonstrate the ARM cortex M3 architectures an	d its feature.			
Unit IV	ARM CORTEX Processors	(06 Hrs.)			
Introduction to ARM CC	DRTEX series, advantages over classical series and for embed	lded system design.			
CORTEX A, CORTEX	M, CORTEX R processors series, versions, features and	applications, ARM			
Cortex-M3 architecture,	features and its functional description, advantages of AF	RM Cortex-M3 for			
embedded application, C	omparison of ARM Cortex-M3 and ARM 7, Firmware develo	opment using			
CMSIS standard for ARM	M Cortex.				
Mapping of Course Outcomes for Unit V	CO5: Understand ARM CORTEX M4 based Microcontr architecture	oller STM32F4xx			
Unit V	Introduction to ARM CORTEX M4 Based Microcontroller	(07Hrs.)			
Introduction to ARM CC	DRTEX M4 microprocessor core, programmer model, Process	or Modes, Memory			
Map, STM32F4xx Arch	itecture, STM32F4xx Clock and SYSCLK, Peripheral Clock	, PLL clock, GPIO			
Programming, Interfacin	g seven segment LED, LDR and MQ3 sensor with STM32F	F4xx, STM32F4xx:			
Counters and Timers: Tin	mer and Delay Generation.				
Mapping of Course Outcomes for Unit VI	CO6: Design simple applications using ARM and IoT				
Unit VI	Embedded System and Internet of Things	(06 Hrs.)			
Introduction to Embedd	ed System and its characteristics and architecture, introduc	ction to Internet of			
Things and its architectu	re, Sensors and actuators, Basic block diagram of Embeddee	d System with IoT,			
Case study using IoT: St	nart Home automation, Waste Management for Smart City, S	Smart Car, Parking			
system, health monitorin	g system, agriculture automation, Transportation management				
	Learning Resources				
Text Books:					
1. Andrew Sloss, Dominic Symes, Chris Wright, -ARM System Develops Guide - Designing and					
Optimizing System S	oftwarel, ELSEVIER				
2. Andrew Sloss, Dominic Symes, Chris Wright, -ARM System Develops Guide - Designing and					
Optimizing					
3. Shujen Chen, Muhar	3. Shujen Chen, Muhammad Ali Mazidi, EshraghGhaemi, -STM32 Arm Programming for Embedded				
Systems: Using C Language with STM32I, Nucleo, Micro DigitalEd., Illustrated Edition,2018.					

Reference Books

- 1. LPC214xUser manual(UM10139):-www.nxp.com
- 2. ARM architecture reference manual:-www.arm.com
- 3. https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
- 4. RM0390 Reference manual, STM32F446xx advanced Arm®-based 32-bit MCUs
- 5. ARM architecture reference manual : www.arm.com
- 6. https://class.ece.uw.edu/474/peckol/doc/StellarisDocumentation/IntroToCortex-M3.pdf

MOOC / NPTEL Courses:

NPTEL Course on - Embedded System Design with ARM -

Link: https://nptel.ac.in/courses/106/105/106105193/

Savitribai Phule Pune University					
Third Year of Ele	ectronics and Computer Eng	gineering (2019 C	course)		
310355A:El	ective-II - Software Moo	leling and Desig	gn		
Teaching Scheme:Credit: 03Examination Scheme:					
Theory: 03 Hrs. / week		In-Sem (Theory): 3	30 Marks		
		End-Sem (Theory)	: 70 Marks		
Prerequisite Courses, if any:		l			
1. Basic Knowledge of Object-o	riented Programming				
2. Software Engineering					
3. Database Management Syster	n				
Companion Course, if any: So	ftware Modeling and Design Lab				
Course Objectives: To make	the students understand				
1. To understand UML and it	s use to arrive at a design solution	for real world problem	ms.		
2. To understand basics of ob	ject-oriented Modeling.				
3. To learn Design concepts i	n the development of for real worl	d problems using obje	ect modeling.		
4. To explore Interaction and behavior modeling.					
5. To understand Software design principles and patterns.					
6. To explore the architectura	l design guidelines in various type	of application develo	opment.		
Course Outcomes: On compl	etion of the course, learner will be	able to -			
CO1:Understand basics of obje	ect oriented methodologies and Un	ified Modeling Langu	age (UML).		
CO2: Apply analysis process, u	se case modeling, domain/class m	odeling.			
CO3:Design and apply interact	ion and behavior modeling on a gi	ven system.			
CO4:Comprehend OO design p	process and business, access and vi	ew layer class design			
CO5:Recognize the software d	esign principles and patterns to be	applied on system.			
CO6:Illustrate architectural design principles and guidelines in the various type of application					
development.					
Course Contents					
Unit IINTRODUCTION TO OOM AND UML(06 Hrs.)					
Introduction to Object Oriented Methodology- Study of various design methodologies like Object					
Oriented Design by Booch, Ob	ject Modelling Techniques by R	umbaugh, Object-Ori	iented Analysis by		
Codd Yourdon and Object-Oriented Software Engineering by Ivar Jacobson					

Unified Approach – Unification of Booch, Rumbaugh and Jacobson methodologies, Object - Oriented Analysis, Object Oriented Design, Iterative Development & Continuous Testing, Modelling based on

UML, Layered Approach

Unified Modeling Language – Introduction to Modeling and UML2.0, MDA, UML2.0 Structure, UML Building Blocks, UML common Mechanisms, Introduction to all UML2.0 Diagram notational Techniques, 4+1View

Mapping of Course
Outcomes for Unit ICO1: Understand basics of object oriented methodologies and Unified
Modeling Language (UML).Unit IIOBJECT ORIENTED ANALYSIS(06 Hrs.)

Object Oriented Analysis Process: Use Case Modeling: Actor Identification, Actor Classification, Actor Generalization, Use Case Identification, Uses/Include/Extend Association, Writing a formal use case, Forward Engineering (Use case realization)

Class Modeling: Approach for identifying class, Approaches for identifying classes, Class pattern approach, Class Responsibilities, Collaboration Approach, Naming Classes, Class associations

Generalization specialization relationship, Aggregation and Composition Relationships

Mapping of Course Outcomes for Unit II	CO2: Apply analysis process, use case modeling, domain/	class modeling.
Unit III	INTERACTION AND BEHAVIOR MODELING	(06 Hrs.)

Activity Diagram: Activity and Actions, Activity Edge, Decision and Merge Points, Fork-Join, Control Flow, Constraints on Action, Swim Lanes.

Sequence Diagram: Context, Objects and Roles, Links, Object Life Line, Message or stimulus,

Activation/Focus of Control, delete object, Modelling Interactions.

Collaboration Diagram: Objects and Links, Messages and stimuli, Active Objects, Communication Diagram, Iteration Expression, Parallel Execution, Guard Expression, Timing Diagram.

State Diagram: State Machine, Triggers and Ports, Transitions and conditions, Initial and Final State, nested state, Composite States, Submachine States.

Mapping of Course
Outcomes for Unit IIICO3: Design and apply interaction and behavior modeling on a given
system.Unit IVOBJECT ORIENTED DESIGN PROCESS(06 Hrs.)

Object Oriented Design Process: Designing Business Layer: Object Oriented Constraints Language (OCL), **Designing Business Classes:** The Process, Designing Well Defined Class Visibility, Attribute Refinement, Method Design Using UML Activity Diagram, Packaging and Managing Classes.

Designing Access Layer: Object Relational Systems, Object Relation Mapping, Table Class Mapping, Table — Inherited Classes Mapping, Designing the Access Layer Classes: create mirror classes, identify access layer class relationships, eliminate redundant classes, create method classes.

Designing View Layer: View Layer Classes Design, Identifying View Classes by Analyzing Use Cases, Macro-Level Design Process – identify view layer objects, and build prototype for view layer Interface. **Test Usability and User satisfaction:** Component and Deployment Design using Component and Deployment Diagram.

Mapping of Course Outcomes for Unit IV	apping of CourseCO4: Comprehend OO design process and business, access and view layer classutcomes for Unit IVdesign.				
Unit V	SOFTWARE DESIGN PRINCIPLES AND (06 Hrs.) PATTERNS				
Introduction and need	of Design Principles: General Responsibility Assignment Software Patterns				
(GRASP): Introduction,	Creator, Information Expert, Low coupling, Controller, High Cohesion,				
Polymorphism, Pure fabr	rication, Indirection, Protected Variations.				
Introduction to GOF de	esign patterns : Types of design patterns: Creational Pattern: Singleton, Factory				
Structural Pattern: Ada	apter, Façade Behavioral Patterns: Strategy, State				
Mapping of Course	CO5: Recognize the software design principles and patterns to be applied				
Outcomes for Unit V	on system.				
Anatomy of Software A	rehitecture Quality attributes in architecture design Designing Object Oriented				
Seference Analitestan	Designing Officer Sector Architecture Designing Object-Officient				
Software Architecture,	Designing Client/Server Software Architecture, Designing Service-Oriented				
Architectures, Designing	g Component-Based Software Architectures, Designing Concurrent and Real-				
Time Software Architect	ures. Product Line Architecture design.				
Mapping of Course Outcomes for Unit VI	CO6: Illustrate architectural design principles and guidelines in the various type of application development.				
	Learning Resources				
Text Books:					
1. Ali Bahrami, Object O	riented systems Development using Unified Modelling Language McGraw – Hill,				
International Editions 1	999, ISBN: 0-07-1160090-6				
2. Erich Gamma et	al, Design Patterns: Elements of Reusable Object, Pearson, First				
Edition,ISBN:9789332	555402, 9332555400				
3. Erich Gamma et al,	Design Patterns: Elements of Reusable Object, Pearson, First Edition, ISBN:				
9789332555402, 93325	555400.				
Reference Books:					
1. Dan Pilone, Neil Pitn	nan, UML in Nutshell, O'reilly Pub., ISBN:8184040024, 9788184040029.				
2. Object-Oriented Analysis and Design with Applications, Third Edition by Grady Booch, Robert A.					
Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim Conallen, and Kelli Houston, 2007.					
3. An introduction	to Software Architecture by Shaw & Garlan,				
http://sunnyday.mit.edu/16.355/intro_softarch.pdf					
4. Hassan Gomaa, Software Modeling And Design UML, Use Cases, Pattern, & Software Architectures,					
Cambridge University Press, ISBN: 978-0-521-76414-8.					
5. JIM Arlow, IlaNeus	stadt, UML 2 and the Unified Process, Pearson, Second Edition, ISBN:				
9788131700549 Tom Pender, UML 2 Bible, Wiley India, ISBN: 9788126504527.					
	· · · · · · · · · · · · · · · · · · ·				

Third Year of Electronics and Computer Engineering (2019 Course)

310355B:Elective II - Advanced Database Management System

			_		
Teaching Scheme:		Credit: 03	Examination Sche	me:	
Theory: 03 Hrs. / week			In-Sem (Theory):	30 Marks	
			End-Sem (Theory): 70 Marks	
Prerequisite Courses, if a	any: Da	atabase Management System			
Companion Course, if an	ny:				
Course Objectives:					
1. To understand the fu	ndamei	ntal concepts of Relational and Ob	oject-oriented databa	ses.	
2. To learn and understa	and var	ious Parallel and Distributed Data	abase Architectures a	and Applications.	
3. To understand and ap	pply the	e basic concepts, categories and to	ols of NoSQL Datał	base.	
4. To learn and understa	and Da	ta warehouse and OLAP Architec	tures and Applicatio	ns.	
5. To learn data mining	archite	ecture, algorithms, software tools	and applications.		
6. To learn enhanced da	ata mod	lels for advanced database applica	itions.		
Course Outcomes: On o	comple	tion of the course, learner will be	able to		
CO1: Differentiate relati	ional ar	nd object-oriented databases.			
CO2: Illustrate parallel &	& distri	buted database architectures.			
CO3: Apply concepts of	NoSQI	L Databases.			
CO4: Explain concepts of	of data v	warehouse and OLAP technologie	28.		
CO5: Apply data mining	g algorit	thms and various software tools.			
CO6: Comprehend emer	ging an	nd enhanced data model for advan	ced applications.		
		Course Contents			
Unit I	Rev	iew Of Relational Data Mode Database Constra	l and Relational ints	(06Hrs.)	
Relational model conce	pts, Re	elational model constraints and	relational database	schemas, Update	
operations, anomalies, des	aling w	with constraint violations, Types	and violations. Ove	erview of Object-	
Oriented Concepts-Objects, Basic properties. Advantages, examples, Abstract data types, Encapsulation,					
Class hierarchies, polymorphism examples.					
Mapping of Course Outcomes for Unit ICO1: Differentiate relational and object-oriented databases.					
Unit II		Concepts for Object Da	atabases	(06Hrs.)	
Object Identity– Object structure Type Constructors–					
Encapsulation of Operations – Methods – Persistence – Type and Class Hierarchies – Inheritance. XML					
Databases: XML - Relate	ed Tech	nologies - XML Schema - XMI	L Query Languages	- Storing XML in	

Databases- XML and SQ	Databases- XML and SQL.				
Mapping of Course Outcomes for Unit IICO2: Illustrate parallel & distributed database architectures.					
Unit III	NOSQLDATABASES	(06Hrs.)			
Introduction, Overview,	and History of NoSQL Databases- The definition of Four	Types of No SQL			
Databases. NoSQL Key/	Value Database: MongoDB, Column-Oriented Database: A	Apache Cassandra,			
Comparison of Relationa	l and NoSQL databases, NoSQL database Development Tools	(Map			
Reduce/Hive) and Progra	amming Languages(XML/JSON)				
Mapping of Course Outcomes for Unit III	CO3: Apply concepts of NoSQL Databases.				
Unit IV	DATA WAREHOUSING	(06Hrs.)			
Architectures and comp	ponents of data warehouse, Characteristics and limitations of	data warehouse,			
Data ware house sch	nema(Star, Snow flake), OLAP Architecture (ROLAP/	MOLAP/HOLAP),			
Introduction to decision	support system, Views and Decision support				
Mapping of Course Outcomes for Unit IV	CO4: Explain concepts of data warehouse and OLAP tech	nnologies.			
Unit V	DATA MINING	(06Hrs.)			
Introduction to Data M	ining, KDD seven step process, Architecture of data mining, I	ntroduction to			
Predictive and descriptiv	e algorithms, Data mining software and applications				
Mapping of Course Outcomes for Unit V	CO5: Apply data mining algorithms and various software	e tools.			
Unit VI	ENHANCED DATA MODELS FOR ADVANCED APPLICATIONS	(06Hrs.)			
Active database concept	ts and triggers; Temporal, Spatial, and Deductive Databases-	Basic concepts.			
More Recent Application	ns: Mobile databases; Multimedia databases; Geographical Inf	formation Systems;			
Genome data manageme	nt.				
Mapping of Course Outcomes for Unit VI	CO6: Comprehend emerging and enhanced data mod applications.	lel for advanced			
	Learning Resources				
 Text Books: 1. Silberschatz A.,Korth H., Sudarshan S, Database System Concepts,McGraw Hill Publication,ISBN-0-07-120413-X,SixthEdition. 					
2. S. K. Singh, Database Systems: Concepts, Design and Application, Pearson Publication, ISBN-978-					
81-317-6092-5.					
Reference Books:					
1. Kristina Chodorow, Michael Dirolf,—MongoDB: The Definitive Guidel, O'Reilly Publications					
2. Jiawei Han, Micheline Kamber, Jian Pei, — Data Mining: Concepts and Techniques , Elsevier					
3. Mario Piattini ,Oscar Diaz-Advanced Database Technology and Design ^{II} -online book.					

4. M. Tamer Özsu, Patrick Valduriez, -Principles of Distributed Database Systems PrenticeHall,1999.

5. Ramez Elmasri and Shamk ant B. Navathe -Fundamentals of Database System^{17th} Edition

MOOC/NPTEL Courses:

- <u>https://nptel.ac.in/courses/106105175</u>
- <u>https://nptel.ac.in/course/106105174</u>
- Data Mining-Course : (swayam2.ac.in)

Savitribai Phule Pune University					
Third Year of Electronics and Computer Engineering (2019 Course) 310355C:Elective II - Power Electronics					
Teaching Scheme:		Credit: 03	Examinat	ion S	cheme:
Theory: 03 Hrs. / we	: 03 Hrs. / week In-Sem (Theory): 30 Marks				
			End-Sem	(The	ory): 70 Marks
Prerequisite Courses	s, if any:		1		
Companion Course,	if any: Pov	ver Electronics Lab			
Course Objectives:	To make the	ne students understand			
1. To understand co	onstruction,	switching characteristics and pro-	otection of po	ower	devices.
2. To understand pr	rotection cir	cuits and triggering circuits for p	ower device	es.	
3. To give an expo	sure to stuc	lents of working & analysis of c	ontrolled re	ctifie	rs, Inverters, choppers,
AC voltage contr	rollers for d	ifferent loads.			
Course Outcomes:	On comple	tion of the course, learner will be	able to -		
CO1: Select power	devices for	different power conversion app	lications.		
CO2: Design & Im	plement ga	te drive circuits for power device	s.		
CO3: Understand t	he operation	n of Controlled rectifiers.			
CO4: Understand t	he operation	n of Choppers and Single phase A	AC voltage c	contro	ller.
CO5: Understand t	he operation	n of Inverters.			
CO6: Utilize Powe	r Electronic	s Converters in various industria	l application	IS.	
Course Contents					
Unit I		Power Devices			(06 Hrs.)
Power MOSFET: Breakdown voltages,	Construct Safe Operat	ion, Operation, Static chara	acteristics,	Swit	ching characteristics,
IGBT: Construction,	Operation,	Steady state characteristics, Sw	witching cha	aracte	ristics, Safe operating
area, applications.					
SCR, Power MOSFET and IGBT.					
Mapping of	CO1: Assin	nilate the physics, characteristic	cs and para	mete	rs of SCR, MOSFET
Course a Outcomes for	and IGBT t	owards its application as a swit	tch.		
Unit I					
Unit II	Gate dr	ive circuits and Protection ci	rcuits for		(06 Hrs.)
Coto/Pase drive singuity for Dewar MOSEET ICPT SCD. Need & requirements of location of Coto and					
base drives using pulse transformers and Onto-coupler Synchronized UIT triggering for SCP					
base unives using pulse nansionners and Opto-coupler, synchronized UJ1 inggering for SUR,					

Microprocessor based triggering circuit. Protection circuits for Power Devices: Cooling and heat sinks. Snubber circuits, Voltage protection by Selenium diodes and MOVs. Current protections using fuse

Mapping of	CO2: Design Gate drive circuits and Protection circuits for	or Power devices for
Course Outcomes	given specifications.	
for Unit II		
Unit III	Controlled Rectifiers	(06 Hrs.)

Single phase Semi & Full converters for R, R-L load, Performance parameters.

Three phase Semi & Full converters, Single Phase PWM Rectifier using IGBT, Three Phase Controlled Rectifier Using IGBT, and Difference between SCR based conventional rectifiers and IGBT based rectifiers. Power factor improvement techniques, Supply side filters for harmonic eliminations, Load side filters for ripple reduction. Overview of applications of Controlled rectifies in DC drives.

Mapping of Course Outcomes	CO3: Analyze and assess the performance of Controlled variants, towards applications in DC drives.	Rectifiers with their
for Unit III		
Unit IV	Choppers & AC Voltage Controllers	(06 Hrs.)

Step down chopper for R/RL load, Step up chopper, Control strategies. 2-quadrant & 4 quadrant choppers, Performance parameters, Design of control circuit using PWM IC LM3524. Applications of choppers, SMPS, Overview of applications of Choppers in DC drive.

AC Voltage Controllers: Single phase AC Voltage Controller for R load.

Mapping of Course Outcomes for Unit IV	CO4: Analyze and assess different types of choppers and Parameters towards applications in SMPS and DC drives	its performance S.
Unit V	Inverters	(06 Hrs.)

Single phase full bridge inverter for R & R-L loads, performance parameters, three phase voltage source inverter for balanced star R load. Variable frequency and Voltage control of inverters. Need of PWM inverters. Design of control circuit for single phase inverters using PWM IC LM3524, Overview of applications of three phase PWM inverters for three phase variable frequency drives (VFDs)

Mapping of	CO5: Analyze and assess different types of Inverters and its performance		
Course Outcomes	Parameters towards applications in PWM inverters for three phase variable		
for Unit V	frequency drives.		
Unit VI	Industrial Applications of Power Electronics	(06 Hrs.)	

Electric Vehicles & Traction applications, HVDC transmission system, UPS: ON-line and OFF line.

Battery Charging Applications, Induction heating applications.

Mapping of	CO6: Understand and explain the various Industrial Applications of Power
Course Outcomes	Electronics
for Unit VI	

Learning Resources

Text Books:

1. Power Electronics – M. H. Rashid, Prentice Hall of India Pvt. Ltd.

2. Power Electronics: Converters, Applications and Design - Ned Mohan, Tore M. Undeland and

William P. Robbins, 3rd Edition, John Wiley and Sons.

Reference Books:

- **1. Power Electronics-** M. D. Singh and Khanchandani K. B., Tata McGraw Hill Publishing Company Limited.
- **2.** Power Electronics Cyril W. Lander.

MOOC / NPTEL Courses:

1. NPTEL Course on "Power Electronics"

https://nptel.ac.in/courses/108105066

https://nptel.ac.in/courses/108102145

https://nptel.ac.in/courses/108107128

https://nptel.ac.in/courses/108108077

https://batteryuniversity.com/

	S	avitribai Phule Pune Univ	ersity		
Third Year	of Elect	tronics and Computer Eng	gineering (2019 (Course)	
310355D:Elective II - PLC and Automation					
Teaching Scheme:		Credit: 03	Examination Sche	me:	
Theory: 03 Hrs. / week In-Sem (Theory): 30 Marks					
			End-Sem (Theory): 70 Marks	
Companion Course, if an	ny: Elect	ive-II Lab			
Course Objectives:			· · · · · · · · ·		
1. Discuss importanc	e, purp	pose, functions and operat	ions of the Pl	LC in industrial	
application.					
2. The ladder diagrams	for indus	strial control applications.			
3. Aware how to s	select th	ne essential elements and	practices needed	to develop and	
implement the engin	eering au	tomation using PLC.			
Course Outcomes: On	completi	on of the course, learner will be	able to -		
COI: Apply concepts of	of PLC, it	ts uses for industrial applications	S.		
CO2: Demonstrate Rel	ay logic i	instructions & PLC ladder progra	ams for industrial ap	oplications.	
CO3: Demonstrate tim	ner, coun	ter arithmetic, comparison fu	inctions & PLC 1	adder programs	
for industrial ap	plications	5.			
CO4: Make use of k	nowledg	e of Installation, troubleshooti	ng & maintenance	of PLC to	
provide solution	for indu	strial automation problems.			
CO5: Describe fundam	nentals of	process control, SCADA & HM	II		
CO6: Select appropriat	te interfa	cing technique & communicatio	n protocol to establi	sh communication	
with field device	es, HMI &	& SCADA.			
		Course Contents			
Unit I		PLC Overview		(06 Hrs.)	
Definition & History of PLC, Basic structure & Components of PLC, Principle of Operation,					
Selection of PLC, Why Use PLC, PLC I/O Modules, Memory & How it is used, PLC					
advantages & Disadvantages, PLC vs Computers, Overview of Micro PLCs. Conventional					
ladders vs PLC Ladder logic, What is Logic? Overview of Logic functions, Number systems					
& Codes, Hardwired Logic vs Programmed logic, Programming word level logic instructions,					
Relation of digital gate logic to contact/coil logic					
Mapping of Course CO1: Apply concepts of PLC, its uses for industrial applications.					
Outcomes for Unit I		Reside of DI C Drogromm	ning_I	(06 Hrc)	
		Dasies of LECT (ugrallin	ing -i	(00 1115.)	

Processor memory organization, PLC Programming languages, Ladder diagrams, Relays, switches, sensors, output control devices. latching relays. ladder diagram contactors, elements. Instructions: Relay type instructions. Instruction addressing. Branch Instructions. Internal Relay Instructions, Programming. Develop a PLC ladder logic diagram for given situation: A railway station has 3 platforms A, B and C. A train is coming into the station. It has to be given entry to platform A if A is empty. If both A and B are occupied then it has to be given entry to platform C. If all the platforms are full then the train has to wait.

Mapping of Course	CO2: Demonstrate Relay logic instructions & PLC ladder	r programs for
Outcomes for Unit II	industrial applications.	
Unit III	Basics of PLC Programming –II	(06 Hrs.)

Basic Functions : PLC Timer & Counter functions, Timer & Counter Industrial applications, Arithmetic functions, Comparison functions, Jump functions, Data handling functions, Digital Bit functions, PLC matrix Functions, Advanced PLC Functions: Analog PLC operation, PID control of Continuous processes. Develop PLC program for following statement:

Motor 1 (M1) starts as soon as start switch is ON; after 10 Seconds M1 goes off and Motor 2 (M2) starts. After 5 seconds M2 goes OFF and M3 starts. After 10 Seconds M3 goes off, M1 Starts. and the cycle is repeated. When stop switch is ON, all Motors are stop.

Mapping of Course
Outcomes for Unit IIICO3: Demonstrate timer, counter arithmetic, comparison functions & PLC
ladder programs for industrial applications.Unit IVPLC Installation, Troubleshooting & Maintenance(06 Hrs.)Installation : Consideration of operating environment, Receiving test, check& assembly,

Electrical Noise, Leaky inputs & outputs, Grounding, voltage variations & surges, Circuit protections & wiring, Program Editing& Commissioning. Troubleshooting: Processor

module, Input & Output malfunctions, Ladder logic program. PLC Maintenance.

Mapping of Course CO4: Make use of knowledge of Installation, troubleshooting & **Outcomes for Unit IV** maintenance of PLC to provide solution for industrial automation problems. Unit V **Process control. HMI & SCADA** (06 Hrs.) Types of processes, structure of control systems, on/off control, PID Control, Motion control, SCADA (Supervisory control and data acquisition): Block diagram, RTU (Remote terminal unit), Functions of RTU, MTU (Main terminal unit), functions of MTU. operating interfaces& applications, HMI (Human Machine Interface, Interfacing technique of PLC with HMI.

Mappi	Mapping of Course CO5: Describe fundamentals of process control, SCADA & HMI.												
Outcomes for Unit V			J nit V										
	Uni	t VI				PI		Networking				(06 Hrs.)
Types	of	com	nmunicati	on i	nterface,	Types	of	networking	channels,	Advant	ages	of	standard

industrial network, Data Communications, Serial communication, Industrial network : CAN (Controller area network), DeviceNet, ControlNet, EtherNet/IP, Modbus, Fieldbus, Profibus-PA/DP

MappingofCourseCO6: Select appropriate interfacing technique & communication protocolOutcomes for Unit VIto establish communication with field devices, HMI & SCADA.

Learning Resources

Text Books:

1. Programmable Logic Controllers, Frank D. Petruzella, McGraw-Hill Education, Fourth Edition.

Reference Books:

- 1. Programmable logic controllers & Industrial Automation- Madhuchandra Mitra, Samarjeet Sen Gupta Penram International Pvt. Ltd., Fourth reprint, 2012
- 2. Programmable Logic Controllers, W. Bolton, Elsevier, Fourth Edition, 2015
- 3. Programmable Logic Controllers, Principles & Applications John W. Wobb, Ronald, A. Rais, PHI publishing, Fifth Edition
- 4. Introduction to Programmable Logic Controllers, Garry Dunning, Thomson, Delmar Learning, 3rd Edition.

MOOC / NPTEL Courses:

1. NPTEL Course on -Industrial Automation and Control ${{}\!\!\!|}$

Link: https://nptel.ac.in/courses/108/105/108105062/

Third Year of Electronics and Computer Engineering (2019 Course)

310356: Computer Networks & Security Lab

Teaching Scheme:	Credit: 01	Examination Scheme:
Theory: 02 Hrs. / week		Oral: 25 Marks
		Termwork: 25 Marks

List of Laboratory Experiments

(Perform any 8 experiments)

- 1. Study of network commands & IP address configurations.
- 2. Study of Cable tester for fault detection of UTP-CAT5 Cross / Straight LAN cable.
- 3. Implementation of LAN using star topology and connectivity between two computers using cross over UTP CAT5 cable. (Cisco Packet Tracer)
- 4. Installation and configuration of Web Server and hosting web page using HTML programming. (Cisco Packet Tracer)
- 5. Installation and configuration of Proxy Server.
- 6. Installation and configuration of FTP server for FTP communication.
- 7. Installation and configuration of Telnet server for Telnet Communication. (Teamviewer)
- 8. Write a program in "C" for Encryption and Decryption (RSA Algorithm).
- 9. Write a program in "C" for Shortest Path algorithm.
- 10. Connectivity of LAN computers to Internet using Dial-Up modem/leased line Modem /Mobile Handset. (Installation and configuration).
- 11. Installation of Suitable Protocol Analyzing software and Analysis of Intranet activities. (Wireshark)
- 12. Configure RIP using packet Tracer.
- 13. Study of any network simulation tools-To create a network with three nodes & establish a TCP connection between node 0 & node 1 such that node 0 will send TCP packet to node 2 via node 1.

Third Year of Electronics and Computer Engineering (2019 Course)

310357:Embedded Processor and Applications Lab

Teaching Scheme:	Credit: 01	Examination Scheme:
Theory: 02 Hrs. / week		Practical: 50 Marks

List of Laboratory Experiments:

Conduct any 07 (seven) experiment form (Group A) 01 to 11 and Conduct any 03 (three) experiment form (Group B) 12 to 17.

GROUP A

- 1. Interfacing LPC2148 to LCD and display message on LCD
- 2. Interfacing LPC 2148 to seven segment display and display a count form 0 to 9 with suitable delay.
- 3. Interfacing LPC2148 to RGB LED and display the possible color generated by RGB LED
- 4. Interfacing LPC2148 for internal ADC and program to display digital value on serial port or on LCD
- 5. Interfacing LPC2148 for internal DAC and program to generate waveform
- 6. Interface LM 35 temperature with LPC 2148 and turn on LED if temperature exceeds 50 0C
- 7. Interface IR sensor and buzzer with LPC2148 and turn on buzzer when intruder detected
- 8. Interface switch and DC motor with LPC2148. Write embedded C program to turn ON/OFF using switch
- 9. LPC2148UART Interfacing LPC2148 in embedded system (GSM/GPS)
- 10. Interfacing EEPROM to LPC2148 using I2C protocol
- 11. Write embedded C program to use timer block of LPC 2148 to generate suitable delay to toggle LEDs.

Group B:

- 12. Interfacing Seven Segment LED using STM32F4xx
- 13. Embedded C program to transmit a character from keyboard using on chip UART for STM32F4xx.
- 14. Write embedded C program to on chip ADC implementation with STM32F4xx
- 15. To control speed and direction of DC Motor using PWM Block for STM32F4xx
- 16. Interfacing Ultrasonic Sensor HC-SR04 with STM32F4xx.
- 17. Interfacing LDR and MQ3 sensor with STM32F4xx

Virtual LAB Links:

Link of the Virtual Lab: http://vlabs.iikgp.ernet.in/rtes/

Note: Additional 2 experiments to be performed using the virtual lab

Third Year of Electronics and Computer Engineering (2019 Course)

210250. Elec Madal ... III oh (Coff. 1 D

510558: Elective-II Lab (Software Modeling and Design)							
Teaching Scheme:	Credit: 01	Examination Scheme:					
Practical: 02 Hrs / week	ractical: 02 Hrs / week Oral: 50 Marks						
Prerequisite Courses, if any:	-						
1. Problem Solving & Object-	Oriented Programming.						
2. Software Engineering and P	roject Management.						
Companion Course, if any: Soft	ware Modeling and Design						
List of Laboratory Experi	iments: (All Experiments	are Compulsory)					
1. Write Problem Statement for	or System / Project						
Identify Project of enough con	nplexity, which has at least 4-5 ma	jor functionalities.					
Identify stakeholders, actors and	write detail problem statement for you	ur system.					
2. Prepare Use Case Model							
Identify Major Use Cases, Iden	ntify actors.						
Write Use Case specification f	for all major Use Cases.						
Draw detail Use Case Diagram using UML2.0 notations.							
3. Prepare Activity Model							
Identify Activity states and Action states.							
Draw Activity diagram with Swim lanes using UML2.0 Notations for major Use Cases							
4. Prepare Analysis Model-Cla	4. Prepare Analysis Model-Class Model						
Identify Analysis Classes and assign responsibilities.							
Prepare Data Dictionary.							
Draw Analysis class Model using UML2.0 Notations.							
Implement Analysis class Model-class diagram with a suitable object oriented language							
5. Prepare a Design Model fro	m Analysis Model						
Study in detail working of system/Project.							
Identify Design classes/ Evolve Analysis Model. Use advanced relationships.							
Draw Design class Model using OCL and UML2.0 Notations.							
Implement the design model with a suitable object-oriented language.							
6. Prepare Sequence Model.							
Identify at least 5 major scenar	rios (sequence flow) for your syste	m.					

Draw Sequence Diagram for every scenario by using advanced notations using UML2.0

Implement these scenarios by taking reference of design model implementation using suitable object-oriented language.

7. Prepare a State Model

Identify States and events for your system.

Study state transitions and identify Guard conditions.

Draw State chart diagram with advanced UML 2 notations.

Implement the state model with a suitable object-oriented language.

Reference Books:

1. UML2 Bible by Tom Pender, Wiley India Pvt. Limited 2011

2. Applying UML and Patterns Second Edition by Craig Larman, Pearson Education

3. UML 2 and the Unified Process, Second Edition, JIM Arlow, IlaNeustadt, Pearson

4. Design Patterns: Elements of Reusable Object Oriented Software, Erich Gamma, Pearson

5. Design Patterns in Java Second Edition by Steven John Metsker, Pearson

All the practicals/assignments should be conducted on Latest version of Open Source Operating Systems,

tools and Multi-core CPU supporting Virtualization and Multi-Threading

Third Year of Electronics and Computer Engineering (2019 Course)

310358: Elective-II Lab (Advanced Database Management System)

Tea	ching Scheme:	Credit: 01	Examination Scheme:				
Practical: 02 Hrs / week Oral: 50 Marks							
Pre	erequisite Courses, if any: -Datab	base Management System					
Co	mpanion Course, if any:						
Li	st of Laboratory Experiment	nts (All Experiments	are Compulsory)				
1.	Create a database with suitable ex	ample using MongoDB and i	mplement • Inserting and saving				
	document(batch insert, insert valid	dation)					
	• Removing document						
	• Updating document (docume	nt replacement, using modifi	ers, upinserts, updating Multiplied				
	documents, returning updated	documents)					
	• Execute at least 10 queries on	any suitable MongoDB data	base that demonstrates following:				
	Find and find One(specific	c values)					
	 Query criteria (Querycond 	litionals,ORqueries,\$not, Co	nditional semantics)Type- specific				
	queries(Null, Regular exp	ression, Querying arrays)					
	⋟ \$where queries						
2.	Cursors(Limit, skip, sort, a Implement Map-reduce and aggre	advanced query options) gation, indexing with suitabl	e example in MongoDB. Demonstrate the				
	following:						
	• Aggregation framework						
	• Create and drop different types of indexes and explain () to show the advantage of the indexes.						
3.	3. Case Study: Design conceptual model using Star and Snow flake schema for anyone database.						
4.	Mini Project						
	Pre-requisite: Build the mini proje	ect based on the requirement	document and design prepared as a part of				
	Database Management Lab in sec	ond year.					
	• Form team so far around 3to 4	4 people.					
	• Develop the application:						
	Build a suitable GUI by using	g forms and placing the contr	ols on it for any application. Proper data				
	entry validations are expected	1.					
	Add the database connection	with frontend. Implement the	e basic CRUD operations.				

• Prepare and submit report to include: Title of the Project, Abstract, List the hardware and software requirements at the backend and at the front end, Source Code, Graphical User Interface, Conclusion.

Third Year of Electronics and Computer Engineering (2019 Course)

310358: Elective-II Lab (Power Electronics)

Practical: 02 Hrs. / week Oral: 50 Marks Prerequisite Courses, if any: - - Companion Course, if any: 204181 - Electronic Circuits - List of Laboratory Experiments: - I. V-I Characteristics of MOSFET / IGBT - 2. V-I Characteristics of SCR & measurement of holding & latching current - 3. Triggering circuit for MOSFET / IGBT. - 4. Triggering circuit for MOSFET / IGBT. - 5. Single phase Semi / Full Converter with R & R-L load - 6. Three phase Semi / Full Converter with R load - 7. Single/Three Phase PWM bridge inverter for R load - 8. Load and Line Regulation of SMPS - 9. Simulation of Three phase PWM inverters for R and RL load. - 10. Simulation of Three phase PWM inverters for R and RL load - Virtual LAB Links:					
Prerequisite Courses, if any: - Companion Course, if any: 204181 - Electronic Circuits List of Laboratory Experiments: [Any 8 to be performed] 1. V-I Characteristics of MOSFET / IGBT 2. V-I Characteristics of SCR & measurement of holding & latching current 3. Triggering circuit for MOSFET / IGBT. 4. Triggering circuit for thyristor (Using UJT or specialized IC) 5. Single phase Semi / Full Converter with R & R-L load 6. Three phase Semi / Full Converter with R load 7. Single/Three Phase PWM bridge inverter for R load 8. Load and Line Regulation of SMPS 9. Simulation of Three phase PWM inverters for R and RL load. 10. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links:					
Companion Course, if any: 204181 - Electronic Circuits List of Laboratory Experiments: [Any 8 to be performed] 1. V-I Characteristics of MOSFET / IGBT 2. V-I Characteristics of SCR & measurement of holding & latching current 3. Triggering circuit for MOSFET / IGBT. 4. Triggering circuit for thyristor (Using UJT or specialized IC) 5. Single phase Semi / Full Converter with R & R-L load 6. Three phase Semi / Full Converter with R load 7. Single/Three Phase PWM bridge inverter for R load 8. Load and Line Regulation of SMPS 9. Simulation of Three phase Semi/Full converter for R and RL load. 10. Simulation of Three phase PWM inverters for R and RL load					
 List of Laboratory Experiments: [Any 8 to be performed] V-I Characteristics of MOSFET / IGBT V-I Characteristics of SCR & measurement of holding & latching current Triggering circuit for MOSFET / IGBT. Triggering circuit for thyristor (Using UJT or specialized IC) Single phase Semi / Full Converter with R & R-L load Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase PWM inverters for R and RL load. Simulation of Three phase PWM inverters for R and RL load 					
 [Any 8 to be performed] V-I Characteristics of MOSFET / IGBT V-I Characteristics of SCR & measurement of holding & latching current Triggering circuit for MOSFET / IGBT. Triggering circuit for thyristor (Using UJT or specialized IC) Single phase Semi / Full Converter with R & R-L load Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load 					
 V-I Characteristics of MOSFET / IGBT V-I Characteristics of SCR & measurement of holding & latching current Triggering circuit for MOSFET / IGBT. Triggering circuit for thyristor (Using UJT or specialized IC) Single phase Semi / Full Converter with R & R-L load Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load 					
 V-I Characteristics of SCR & measurement of holding & latching current Triggering circuit for MOSFET / IGBT. Triggering circuit for thyristor (Using UJT or specialized IC) Single phase Semi / Full Converter with R & R-L load Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links: 					
 Triggering circuit for MOSFET / IGBT. Triggering circuit for thyristor (Using UJT or specialized IC) Single phase Semi / Full Converter with R & R-L load Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links: 					
 Triggering circuit for thyristor (Using UJT or specialized IC) Single phase Semi / Full Converter with R & R-L load Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links:					
 Single phase Semi / Full Converter with R & R-L load Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links:					
 Three phase Semi / Full Converter with R load Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links:					
 Single/Three Phase PWM bridge inverter for R load Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links: 					
 Load and Line Regulation of SMPS Simulation of Three phase Semi/Full converter for R and RL load. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links: 					
 9. Simulation of Three phase Semi/Full converter for R and RL load. 10. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links: 					
10. Simulation of Three phase PWM inverters for R and RL load Virtual LAB Links:					
Virtual LAB Links:					
Virtual LAB Links:					
Link of the Virtual Lab:					
http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/power_electronics/labs/index.php					
Note: Two experiments to be performed using the virtual labs.					

Third Year of Electronics and Computer Engineering (2019 Course)

310358: Elective-II Lab (PLC and Automation)

Teaching Scheme:	Credit: 01	Examination Scheme:
Practical: 02 Hrs / week		Oral: 50 Marks

List of Laboratory Experiments:

[Any 8 to be performed]

- 1. Simulate & implement basic logic gates ladder logic program.
- 2. Simulate & implement simple start/stop ladder logic.
- 3. Simulate & implement single push button on/off ladder logic.
- 4. Simulate & implement PLC program example with on delay timer.
- 5. Simulate & implement PLC program example with Off delay timer.
- 6. Design & simulate PLC program example with Retentive Timer.
- 7. Design & simulate ladder diagram for DOL Motor Starter.
- 8. Design & simulate traffic light ladder logic diagram.
- 9. Star Delta PLC Ladder Diagram.
- 10. Simulate ladder diagram for Bottle Filling Plant.
- 11. Simulate PLC ladder diagram for Elevator Control.
- 12. Implement traffic light ladder logic using PLC hardware.

Third Year of Electronics and Computer Engineering (2019 Course)

310359: Mini Project

Teaching Scheme:	Credit: 02	Examination Scheme:
Theory: 04 Hrs. / week		Oral: 25 marks
		Termwork: 25 marks

Course Objectives:

- 1. To understand the -Product Development Process including budgeting through Mini Project.
- 2. To plan for various activities of the project and distribute the work amongst team members.
- 3. To inculcate electronic hardware/software implementation skills by -
- 4. Learning design and development of software based applications.
- 5. Imbibing good soldering and effective trouble-shooting practices.
- 6. To develop student_s abilities to transmit technical information clearly and test the same by delivery of Seminar based on the Mini Project.
- 7. To understand the importance of document design by compiling Technical Report on the MiniProject work carried out.

Course Outcomes:

On completion of the course, student will be able to

CO1: Understand, plan and execute a Mini Project with team.

CO2: Implement electronic hardware/software by design and development process

CO3: Prepare a technical report based on the Mini project.

CO4: Deliver technical seminar based on the Mini Project work carried out.

a. Execution of Mini Project

- Project group shall consist of not more than 3 students per group.
- Mini Project Work should be carried out in the Projects software and hardware laboratory.
- Project designs ideas can be necessarily adapted from recent issues/innovative ideas
- Mini Project can be either hardware based or software based
- Bare board test report shall be generated in case of hardware based Mini Project
- Assembly of components and enclosure design is mandatory in case of hardware based Mini Project

b. Selection: Domains for projects may be from the following, but not limited to:

1. Hardware based Mini Project (Innovative ideas)

- Instrumentation and Control Systems
- Electronic Communication Systems
- Biomedical Electronics
- Power Electronics
- Audio , Video Systems
- Embedded Systems
- Mechatronic Systems
- Microcontroller based projects should preferably use Microchip PIC controllers / ATmega controller / AVR microcontrollers / Arduino / Raspberry Pi.

2. Software based Mini Project (Innovative ideas)

- C/C++ based software Projects
- Python based software Projects
- Java based software Projects
- Database management based software Projects
- Artificial Intelligence based software Projects
- Machine Learning based software Projects
- Android based software Projects
- Data Analytic based software Projects etc.

c. Monitoring: (for students and teachers both): Suggested Plan for various activities to be monitored by the teacher.

- Week 1 & 2: Formation of groups, Finalization of Mini project & Distribution of work.
- Week 3 &4: PCB artwork design using an appropriate EDA tool, Simulation hardware based Mini project
- Week 3 & 4: Development of architectural model or algorithm for software based Mini project
- Week 5 to 8: PCB manufacturing through vendor/at lab, Hardware assembly, programming(if required) Testing, Enclosure Design, Fabrication etc. for hardware based Mini project
- Week 5 to 8: design and testing of modular programs for software based Mini project
- Week 9 & 10: Testing of final product/software, Preparation, Checking & Correcting of the Draft Copy of Report
- Week 11 & 12: Demonstration and Group presentations.

Log book for all these activities shall be maintained and shall be produced at the time of examination.

d. Report writing: A project report with following contents shall be prepared:

A. For Hardware based Mini Project

- Title
- Abstract
- Introduction
- Aim and Objectives
- Specifications
- Block Diagram
- Circuit Diagram
- Selection of components, calculations
- Simulation Results
- PCB Art work
- Testing Procedures
- Enclosure Design
- Test Results
- Conclusion and future work
- References

B. For Software based Mini Project

- Title
- Abstract
- Introduction
- Scope of the Work
- Requirements of software project
- Aim and Objectives
- Proposed architecture/methodology
- Details of Software used
- Algorithm and flow chart
- User Interface
- Experimentation
- Test Results
- Conclusion and Future work
- Project source code & program
- References

Third Year of Electronics and Computer Engineering (2019 Course)

310360:Internship**

Teaching Scheme:	Credit: 04	Examination Scheme:
Theory: Hrs / week		Termwork: 100 Marks

Course Objectives:

Internship provides an excellent opportunity to learner to see how the conceptual aspects learned in classes are integrated into the practical world. Industry/on project experience provides much more professional experience as value addition to classroom teaching.

- 1. To encourage and provide opportunities for students to get professional/personal experience through internships.
- 2. To learn and understand real-life/industrial situations.
- 3. To get familiar with various tools and technologies used in industries and their applications.
- 4. To nurture professional and societal ethics.
- 5. To create awareness of social, economic and administrative considerations in the working environment of industry organizations.

Course Outcomes: On completion of the course, learners should be able to **CO1:Demonstrate** professional competence through industry internship.

CO2:Apply knowledge gained through internships to complete academic activities p rofessional manner.

CO3:Choose appropriate technology and tools to solve given problem.

CO4:Demonstrate abilities of a responsible professional and use ethical practices in day day life.

CO5:Creating network, social circle and developing relationships with industry people.

CO6:Analyze various career opportunities and decide carrier goals.

**** Guidelines:**

Internships are educational and career development opportunities, providing practical experience in a field or discipline. Internships are far more important as the employers are looking for employees who are properly skilled and having awareness about industry environment, practices and culture. Internship is structured, short-term, supervised training often focused around particular tasks or projects with defined time scales.

Core objective is to expose technical students to the industrial environment, which cannot be simulated/experienced in the classroom and hence creating competent professionals in the industry and to understand the social, economic and administrative considerations that

influence the working environment of industrial organizations.

Engineering internships are intended to provide students with an opportunity to apply conceptual knowledge from academics to the realities of the field work/training. The following guidelines are proposed to give academic credit for the internship undergone as a part of the Third Year Engineering curriculum.

Duration:

Internship is to be completed after semester 5 and before commencement of semester 6 of at least 4 to 6 weeks; and it is to be assessed and evaluated in semester 6.

Internship work Identification:

Student may choose to undergo Internship at Industry/Govt. Organizations/NGO/MSME/Rural Internship/ Innovation/IPR/Entrepreneurship. Student may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/NGO's/Government organizations/Micro/Small/ Medium enterprises to make themselves ready for the industry [1].

Students must register at Internshala [2]. Students must get Internship proposals sanctioned from college authority well in advance. Internship work identification process should be initiated in the Vth semester in coordination with training and placement cell/ industry institute cell/ internship cell. This will help students to start their internship work on time. Also, it will allow students to work in vacation period after their Vth semester examination and before academic schedule of semester VI.

Student can take internship work in the form of the following but not limited to:

- Working for consultancy/ research project,
- Contribution in Incubation/ Innovation/ Entrepreneurship Cell/ Institutional Innovation
 Council/ startups cells of institute /
- Learning at Departmental Lab/Tinkering Lab/ Institutional workshop,
- Development of new product/ Business Plan/ registration of start-up,
- Industry / Government Organization Internship,
- Internship through Internshala,
- In-house product development, intercollegiate, inter department research internship under research lab/group, micro/small/medium enterprise/online internship,
- Research internship under professors, IISC, IIT's, Research organizations,
- NGOs or Social Internships, rural internship,
- Participate in open source development.

Internship Diary/ Internship Workbook:
Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should record in the daily training diary the day-to-day account of the observations, impressions, information gathered and suggestions given, if any. The training diary/workbook should be signed every day by the supervisor.

Internship Diary/workbook and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training.

Internship Work Evaluation:

Every student is required to prepare a maintain documentary proofs of the activities done by him as internship diary or as workbook. The evaluation of these activities will be done by Programme Head/Cell In-charge/ Project Head/ faculty mentor or Industry Supervisor based on- Overall compilation of internship activities, sub-activities, the level of achievement expected, evidence needed to assign the points and the duration for certain activities.

Assessment and Evaluation is to be done in consultation with internship supervisor (Internal and External – a supervisor from place of internship.

Recommended evaluation parameters-Post Internship Internal Evaluation -50 Marks + Internship Diary/Workbook and Internship Report - 50 Marks

Evaluation through Seminar Presentation/Viva-Voce at the Institute-

The student will give a seminar based on his training report, before an expert committee constituted by the concerned department as per norms of the institute. The evaluation will be based on the following criteria:

- Depth of knowledge and skills
- Communication & Presentation Skills
- Team Work
- Creativity
- Planning & Organizational skills
- Adaptability
- Analytical Skills
- Attitude & Behavior at work
- Societal Understanding
- Ethics

- Regularity and punctuality
- Attendance record
- Diary/Workbook
- Student's Feedback from External Internship Supervisor

After completion of Internship, the student should prepare a comprehensive report to indicate what he has observed and learnt in the training period.

Internship Diary/workbook may be evaluated on the basis of the following criteria:

- Proper and timely documented entries
- Adequacy & quality of information recorded
- Data recorded
- Thought process and recording techniques used
- Organization of the information

The report shall be presented covering following recommended fields but limited to,

- Title/Cover Page
- Internship completion certificate
- Internship Place Details- Company background-organization and activities/Scope and object of the study / Supervisor details
- Index/Table of Contents
- Introduction
- Title/Problem statement/objectives
- Motivation/Scope and rationale of the study
- Methodological details
- Results / Analysis /inferences and conclusion
- Suggestions / Recommendations for improvement to industry, if any
- Attendance Record
- Acknowledgement
- List of reference (Library books, magazines and other sources)

Feedback from internship supervisor(External and Internal)

Post internship, faculty coordinator should collect feedback about student with recommended parameters include as- Technical knowledge, Discipline, Punctuality, Commitment, Willingness to do the work, Communication skill, individual work, Team work, Leadership..... Reference:

[1]	https://aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf
[2]	https://internship.aicte-india.org/

Savitribai Phule Pune University

Third Year of Electronics and Computer Engineering (2019 Course)

310351B:Mandatory Audit Course 6

Teaching Scheme:	Credit:	Examination Scheme:

List of Courses to be opted (Any one) under Mandatory Audit Course 6

- Digital and Social Media Marketing
- Sustainable Energy Systems
- Leadership and Personality Development
- Foreign Language
- MOOC-Learn New Skills

GUIDELINES FOR CONDUCTION OF AUDIT COURSE

In addition to credits courses, it is mandatory that there should be audit course (non-credit course) from second year of Engineering. The student will be awarded grade as AP on successful completion of audit course. The student may opt for two of the audit courses (One in each semester). Such audit courses can help the student to get awareness of different issues which make impact on human lives and enhance their skill sets to improve their employability. List of audit courses offered in the semester is provided in the curriculum. Student can choose one of the audit course from list of courses mentioned. Evaluation of audit course will be done at institute level. The student registered for audit course shall be awarded the grade AP and shall be included such grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory in-semester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not accounted in the calculation of the performance indices SGPA and CGPA. Evaluation of audit course will be done at institute level itself.

Selecting an Audit Course:

Using NPTEL Platform:

NPTEL is an initiative by MHRD to enhance learning effectiveness in the field of technical education by developing curriculum based video courses and web based e-courses. The details of

NPTEL courses are available on its official website www.nptel.ac.in

- Student can select any one of the courses mentioned above and has to register for the corresponding online course available on the NPTEL platform as an Audit course.
- Once the course is completed the student can appear for the examination as per the guidelines on the NPTEL portal.
- After clearing the examination successfully; student will be awarded with certificate.

Assessment of an Audit Course:

- The assessment of the course will be done at the institute level. The institute has to maintain the record of the various audit courses opted by the students. The audit course opted by the students could be interdisciplinary.
- During the course students will be submitting the online assignments. A copy of same students can submit as a part of term work for the corresponding Audit course.
- On the satisfactory submission of assignments, the institute can mark as -Present and the student will be awarded the grade AP on the marksheet.